MRS Meetings and Events

 

EL18.09.70 2023 MRS Spring Meeting

Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode

When and Where

Apr 12, 2023
5:00pm - 7:00pm

Moscone West, Level 1, Exhibit Hall

Presenter

Co-Author(s)

Byoung Soo Kim1,2,Jeong Gon Son2,Sang-Soo Lee2

Korea Institute of Ceramic Engineering and Technology1,Korea Institute of Science and Technology2

Abstract

Byoung Soo Kim1,2,Jeong Gon Son2,Sang-Soo Lee2

Korea Institute of Ceramic Engineering and Technology1,Korea Institute of Science and Technology2
A commonly used strategy to impose deformability on conductive materials is the prestrain method, in which conductive materials are placed on prestretched elastic substrates and relaxed to create wavy or wrinkled structures. However, 1D metallic nanowire (NW) networks typically result in out-of-plane buckling defects and NW fractures, due to their rigid and brittle nature and nonuniform load transfer to specific points of NW. To resolve these problems, an alternative method is proposed to control the elastic modulus of 1D NW networks through contact with various solvents during compressive strain. Through solvent contact, the interface interactions between the NWs and between the NW and substrate can be controlled, and it is shown that the surface instability of the 1D random network is formed differently from a uniform bilayer film, which also can vary with the modulus of the network. For modulus values lower than the critical point, slippage and rearrangement of NW strands mainly occur and individual strands in the network show an in-plane wavy configuration, which is ideal for structural stretchability. Based on the solvent-assisted prestrain method, letter-sized, large-area stretchable, and transparent electrodes with high transparency and conductivity are achieved, and stretchable and transparent alternating current electroluminescent devices for stretchable display applications are also realized.

Keywords

Ag

Symposium Organizers

Ho-Hsiu Chou, National Tsing Hua University
Francisco Molina-Lopez, KU Leuven
Sihong Wang, University of Chicago
Xuzhou Yan, Shanghai Jiao Tong University

Symposium Support

Bronze
Azalea Vision
MilliporeSigma
Device, Cell Press

Session Chairs

Ho-Hsiu Chou
Francisco Molina-Lopez
Sihong Wang

In this Session

EL18.09.01
Photosensitisation of Inkjet-Printed Graphene with Stable All-Inorganic Perovskite Nanocrystals

EL18.09.02
Contact Resistance of Low-Voltage n-Channel Organic Thin-Film Transistors Based on Three Different Organic Semiconductors

EL18.09.03
Highly Efficient Ternary Near-Infrared Organic Photodetectors for Biometric Monitoring

EL18.09.04
Direct Printing of Suspended Metal Oxides Nanowires on MEMS Chip as Gas Sensor

EL18.09.05
A Pen-on-Paper Graphene Oxide-Based Nanocomposite for Multitype Strain Sensing

EL18.09.06
Printed Memristors for Memory, Computing and Hardware Security

EL18.09.07
Formation of NiSi by Pulsed Laser Annealing on Contact Resistance Reduction and its Applications on Flexible Inverter and 6T-SRAM

EL18.09.08
Thiol-ene Chemistry in the Dielectric Layer Manipulating Polymer-based Devices from Transistors to Non-volatile Memory Devices

EL18.09.09
Photocurable Stretchable Silver Nanocomposite Electrodes

EL18.09.10
Morphological Investigation of High Performance Bulk Heterojunction Active Layer to Probe the Origin of Device Instability

View More »

Publishing Alliance

MRS publishes with Springer Nature