MRS Meetings and Events

 

MT01.09.11 2024 MRS Spring Meeting

Generating Statistically Equivalent Thermal Spray Coatings Using Bayesian Optimization

When and Where

Apr 25, 2024
5:00pm - 7:00pm

Flex Hall C, Level 2, Summit

Presenter

Co-Author(s)

David Montes de Oca Zapiain1,Anh Tran1,Nathan Moore1,Theron Rodgers1

Sandia National Laboratories1

Abstract

David Montes de Oca Zapiain1,Anh Tran1,Nathan Moore1,Theron Rodgers1

Sandia National Laboratories1
Thermal spray deposition is an inherently stochastic manufacturing process used for generating thick coatings of metals, ceramics and composites. The generated coatings exhibit complex internal structures that affect the overall properties of the coating. The deposition process can be adequately simulated using rules-based process simulations. Nevertheless, in order for the simulation to accurately model particle spreading upon deposition, a set of pre-defined rules and parameters need to be calibrated to the specific material and processing conditions of interest. The calibration process is not trivial given the fact that many parameters do not correspond directly to experimentally measurable quantities. This work presents a protocol that automatically calibrates the parameters and rules of a given simulation in order to generate the synthetic microstructures with the closest statistics to an experimentally generated coating. The protocol starts by quantifying the internal structure using 2-point statistics and then representing it in a low-dimensional space using Principal Component Analysis. Subsequently, our protocol leverages Bayesian optimization to determine the parameters that yield the minimum distance between synthetic microstructure and the experimental coating in the low-dimensional space.<br/>Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government. SAND No. SAND2023-10921A

Symposium Organizers

Raymundo Arroyave, Texas A&M Univ
Elif Ertekin, University of Illinois at Urbana-Champaign
Rodrigo Freitas, Massachusetts Institute of Technology
Aditi Krishnapriyan, UC Berkeley

Session Chairs

Chris Bartel
Rodrigo Freitas
Sara Kadkhodaei
Wenhao Sun

In this Session

MT01.09.01
Rapid Discovery of Lightweight Cellular Crashworthy Solids for Battery Electric Vehicles using Artificial Intelligence and Finite Element Modeling

MT01.09.02
Chemical Environment Modeling Theory: Revolutionizing Machine Learning Force Field with Flexible Reference Points

MT01.09.03
A Self-Improvable Generative AI Platform for the Discovery of Solid Polymer Electrolytes with High Conductivity

MT01.09.04
Adaptive Loss Weighting for Machine Learning Interatomic Potentials

MT01.09.05
High-Accurate and -Efficient Potential for BCC Iron based on The Physically Informed Artificial Neural Networks

MT01.09.06
Molecular Dynamics Simulation of HF Etching of Amorphous Si3N4 Using Neural Network Potential

MT01.09.07
Deep Potential Model for Analyzing Enhancement of Lithium Dynamics at Ionic Liquid and Perovskite (BaTiO3) Interface

MT01.09.08
Autonomous AI generator for Machine Learning Interatomic Potentials

MT01.09.09
Capturing The Lone Pair Interactions in BaSnF4 Using Machine Learning Potential

MT01.09.10
Benchmarking, Visualization and Hyperparameter Optimization of UF3 to Enhance Molecular Dynamics Simulations

View More »

Publishing Alliance

MRS publishes with Springer Nature