MRS Meetings and Events

 

EL01.03.07 2023 MRS Spring Meeting

Identification of Structural Phases in Al Doped HfO2-Based Ferroelectric Films by DFT-Assisted EXAFS Analysis

When and Where

Apr 12, 2023
11:45am - 12:00pm

Moscone West, Level 3, Room 3001

Presenter

Co-Author(s)

Mehmet Sahiner1,Rory Vander Valk1,Eric Kurywczak1,Joshua Steier1,Stephen Kelty1,Bruce Ravel2,Joseph Woicik2,Jean Jordan-Sweet3,Christian Lavoie3,Martin Frank3

Seton Hall Univ1,National Institute of Standards and Technology2,IBM T.J. Watson Research Center3

Abstract

Mehmet Sahiner1,Rory Vander Valk1,Eric Kurywczak1,Joshua Steier1,Stephen Kelty1,Bruce Ravel2,Joseph Woicik2,Jean Jordan-Sweet3,Christian Lavoie3,Martin Frank3

Seton Hall Univ1,National Institute of Standards and Technology2,IBM T.J. Watson Research Center3
HfO<sub>2</sub>-based ferroelectrics have become important for future applications in CMOS technology such as negative capacitance low-power field effect transistor (FET) logic, FeRAM or FeFET memory, and FeFET- or ferroelectric tunnel junction (FTJ)-based neural network accelerators.<br/>In our previous studies, we have used density-functional theory (DFT)-assisted extended X-ray absorption fine-structure spectroscopy (EXAFS) to identify the crystalline phases in the films of (Hf<sub>0.46</sub>Zr<sub>0.54</sub>O<sub>2</sub>) as grown by atomic layer deposition [1]. In these films, Ferroelectric switching in TiN/Hf<sub>0.46</sub>Zr<sub>0.54</sub>O<sub>2</sub>/TiN metal-insulator-metal capacitors is verified. We confirmed that the frequently invoked polar orthorhombic <i>Pca2<sub>1</sub> </i>phase is present in ferroelectric hafnium zirconium oxide, along with an equal amount of the non-polar monoclinic <i>P2<sub>1</sub>/c</i> phase. For comparison, we verified that paraelectric HfO<sub>2</sub> films exhibit the <i>P2<sub>1</sub>/c</i> phase. In this study we are extending our studies to identify the crystalline phases in Al-doped HfO<sub>2 </sub>thin films. We have again used density functional theory (DFT)-assisted extended X-ray absorption fine-structure spectroscopy (EXAFS) to determine the structural symmetry of Al doped HfO<sub>2 </sub>thin films. The 8-nm thick HfO2-based films were grown by atomic layer deposition in a metal-insulator-metal (MIM) stack configuration with varying doping levels Al and annealing temperatures. Grazing-incidence fluorescence-yield mode Hf L<sub>3</sub> and Zr K absorption edge EXAFS experiments were performed at the 6-BM beamline at the National Synchrotron Light Source II of Brookhaven National Laboratory. The results of the EXAFS multiphase fitting and the effect of Al doping levels to crystalline phases will be discussed in conjunction with the electrical properties.<br/><br/>[1] M.A. Sahiner et al., Appl. Phys. Lett. <b>118</b>, 092903 (2021)

Keywords

atomic layer deposition | crystallographic structure | electrical properties

Symposium Organizers

Stefania Privitera, CNR
Carlos Ríos, University of Maryland
Syed Ghazi Sarwat, IBM
Matthias Wuttig, RWTH Aachen University

Publishing Alliance

MRS publishes with Springer Nature