MRS Meetings and Events

 

EL08.08.04 2023 MRS Spring Meeting

Hybrid Energy Harvester Based on Perovskite Solar Cell and ZnO Piezoelectric Nanogenerator

When and Where

Apr 12, 2023
5:00pm - 7:00pm

Moscone West, Level 1, Exhibit Hall

Presenter

Co-Author(s)

Yuan Zhang1,Xuan Li1,Joe Briscoe1

Queen Mary University of London1

Abstract

Yuan Zhang1,Xuan Li1,Joe Briscoe1

Queen Mary University of London1
With the consumption of fossil fuels and the increasing awareness of environmental protection, more and more efforts are being put into the development of renewable and clean energy. Mechanical energy is the one of the most abundant and accessible energy sources, and has been widely harvested by large-scale technologies such as wind power or tidal stream generators. Piezoelectric nanogenerators (PENGs) provide a potential way to convert small mechanical energy such as body motion or vibration into electricity, which can be used to power small portable electronics, medical bio implants, remote wireless sensors etc. Also, solar energy offers the potential to provide much higher power levels than motion since the sun delivers more energy to the earth in 1 h than the entire planet consumes in one year. However, light is not always available, nor is movement, therefore a hybrid energy harvester that can make use of both sources provide a more reliable and high-level of power for small, portable or self-powered devices.<br/>Here, a combined solar and piezoelectric hybrid energy harvester (HEH) was designed, fabricated and tested, which combined a PENG and perovskite solar cell with the structure of PET/ITO/ZnO seed layer/ZnO nanorods/perovskite/hole transport layer/Au. Oscillation (NG) and illumination (PV effect) testing indicated that HEHs operated as kinetic and solar energy harvesters both separately and simultaneously. The length and diameter of ZnO nanorods, and the composition of perovskite were optimised to achieve the enhancement of both PV and NG output performance. The coupling effect between perovskite and piezoelectric ZnO nanorods, as known as the piezo-phototronic effect, was also investigated.

Keywords

nanostructure | perovskites

Symposium Organizers

Jun Chen, University of California, Los Angeles
Sohini Kar-Narayan, University of Cambridge
Yong Qin, Lanzhou University
Xudong Wang, University of Wisconsin--Madison

Symposium Support

Bronze
Nano Energy

Session Chairs

Xudong Wang
Wenzhuo Wu

In this Session

EL08.08.04
Hybrid Energy Harvester Based on Perovskite Solar Cell and ZnO Piezoelectric Nanogenerator

EL08.08.05
Manufacturing of Advanced Piezoelectric Nanogenerator by Functionalizing PVDF with LiTaO3 and Multiwalled Carbon Nanotubes (MWCNTs) for Energy Harvesting and Sensing Applications

EL08.08.06
On the Effect of Dielectric Relaxation Mechanisms on the Performance of a Multi-layered Triboelectric Nanogenerator

EL08.08.08
High Performance Mechanical Energy Harvesting from Ionomer Coated Carbon Nanotube Yarn Twist

EL08.08.09
Mover Electrode/Stater with Double Electrodes Triboelectric Nanogenerator with High Instantaneous Current Triggered by a Surficial Contact Electrode

EL08.08.10
Multi-Layered Triboelectric Nanogenerator for Human-Machine Interface Using an Artificial Synaptic Device

EL08.08.11
Compressibility Effect of Charge Generating Layer on Output Performance of Triboelectric Nanogenerator

EL08.08.12
Development of Double Schottky Piezotronic Nano-newton Force Sensor based on Porous ZnO Nanorod Arrays

EL08.08.13
Magneto-Responsive Switching of Liquid-Solid Triboelectrification for Self-Powered Magnetic Proximity Sensor

EL08.08.14
Sustainable Charged Composites with Amphiphobic Surfaces for Harsh Environment–Tolerant Non-Contact Mode Triboelectric Nanogenerators

View More »

Publishing Alliance

MRS publishes with Springer Nature