MRS Meetings and Events

 

SB09.09.01 2023 MRS Fall Meeting

Shear-Responsive Boundary-Lubricated Hydrogels Attenuate Osteoarthritis

When and Where

Dec 5, 2023
10:30am - 10:45am

SB09-virtual

Presenter

Co-Author(s)

Yiting Lei1

The First Affiliated Hospital of Chongqing Medical University1

Abstract

Yiting Lei1

The First Affiliated Hospital of Chongqing Medical University1
Lipid-based boundary layers formed on liposome-containing hydrogels can facilitate lubrication. However, these boundary layers can be damaged by shear, resulting in decreased lubrication. Here, a shear-responsive boundary-lubricated drug-loaded hydrogel is created by incorporating celecoxib (CLX)-loaded liposomes within dynamic covalent bond-based hyaluronic acid (HA) hydrogels (CLX@Lipo@HA-gel). The dynamic cross-linked network enables the hydrogel to get restructured in response to shear, and the HA matrix allows the accumulation of internal liposome microreservoirs on the sliding surfaces, which results in the formation of boundary layers to provide stable lubrication. Moreover, hydration shells formed surrounding the hydrogel can retard the degradation process, thus helping in sustaining lubrication. Furthermore, in vitro and in vivo experiments found that CLX@Lipo@HA-gels can maintain anabolic-catabolic balance, alleviate cartilage wear, and attenuate osteoarthritis progression by releasing CLX and shear-responsive boundary lubrication. Overall, CLX@Lipo@HA-gels can serve as shear-responsive boundary lubricants and drug-delivery vehicles to alleviate friction-related diseases like osteoarthritis.

Symposium Organizers

Guillermo Ameer, Northwestern University
Gulden Camci-Unal, University of Massachusetts Lowell
Melissa Grunlan, Texas A&M University
Carolyn Schutt Ibsen, Oregon Health and Science University

Symposium Support

Silver
Acuitive Technologies, Inc.

Bronze
Center for Advanced Regenerative Engineering, Northwestern University
Nature Materials | Springer Nature

Publishing Alliance

MRS publishes with Springer Nature