MRS Meetings and Events

 

EQ01.03.06 2022 MRS Fall Meeting

Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth

When and Where

Nov 28, 2022
8:00pm - 10:00pm

Hynes, Level 1, Hall A

Presenter

Co-Author(s)

Shiyang He1,Amin Bahrami1,Kornelius Nielsch1

Leibniz Institute of Solid State and Materials Science1

Abstract

Shiyang He1,Amin Bahrami1,Kornelius Nielsch1

Leibniz Institute of Solid State and Materials Science1
In thermoelectric materials, phase boundaries are crucial for carrier/phonon transport. Manipulation of carrier and phonon scatterings by introducing continuous interface modification has been shown to improve thermoelectric performance. In this paper, a strategy of interface modification based on powder atomic layer deposition (PALD) is introduced to accurately control and modify the phase boundary of pure bismuth. Ultrathin layers of Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2,</sub> and ZnO are deposited on Bi powder by typically 1–20 cycles. All of the oxide layers significantly alter the microstructure and suppressed grain growth. These hierarchical interface modifications aid in the formation of an energy barrier by the oxide layer, resulting in a substantial increase in the Seebeck coefficient that is superior to that of most pure polycrystalline metals. Conversely, taking advantage of the strong electron and phonon scattering, an exceptionally large decrease in thermal conductivity is obtained. A maximum figure of merit, <i>zT</i>, of 0.15 at 393 K and an average <i>zT</i> of 0.14 at 300–453 K were achieved in 5 cycles of Al<sub>2</sub>O<sub>3</sub>-coated Bi. The ALD-based approach, as a practical interfacial modification technique, can be easily applied to other thermoelectric materials, which can contribute to the development of high-performance thermoelectric materials of great significance.

Keywords

atomic layer deposition | grain boundaries | metal

Symposium Organizers

Sepideh Akhbarifar, The Catholic University of America
Guangzhao Qin, Hunan University
Heng Wang, Illinois Institute of Technology
Sarah J. Watzman, University of Cincinnati

Symposium Support

Gold
National Science Foundation

Session Chairs

Sepideh Akhbarifar
Heng Wang
Sarah J. Watzman

In this Session

EQ01.03.01
Mobility-Enhanced Thermoelectric Performance in Textured Nanograin Bi2Se3, Effect on Scattering and Surface-Like Transport

EQ01.03.02
A General Approach for Exploiting X-Ray Dynamical Diffraction in Material Sciences and Biophysics

EQ01.03.03
Challenges and Novel Strategies in High-Performance Thermoelectric Material Engineering

EQ01.03.05
P-N Conversion of CrN Films by Oxygen Incorporation and Their Thermoelectric Properties

EQ01.03.06
Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth

EQ01.03.07
Enhancement of Thermoelectric Properties by Magnetic Impurities in Lead-free Thermoelectric Materials

EQ01.03.08
End-On Oriented PEDOT/Graphene Films for Photo-Magneto-Thermoelectric Effect

EQ01.03.09
Mass Production of Cu2-xSe Nanoparticle for Thermoelectric Bulk Materials with Nanosized Grains via High Concentration Metal Complex Precursor

EQ01.03.10
Organic Thermoelectrics

EQ01.03.11
Synthesis of Graphene/Cu Nanoparticles by Photoreduction Method for Enhancing Thermoelectric Power Factor

View More »

Publishing Alliance

MRS publishes with Springer Nature