MRS Meetings and Events

 

SB05.09.04 2024 MRS Spring Meeting

Porous, Antibacterial and Biocompatible GO/n-HAp/bacterial cellulose/β-glucan Biocomposite Scaffold for Bone Tissue Engineering

When and Where

Apr 24, 2024
5:00pm - 7:00pm

Flex Hall C, Level 2, Summit

Presenter

Co-Author(s)

Saqlain Shah1,Mua Khan2

Forman Christian College1,University of Punjab2

Abstract

Saqlain Shah1,Mua Khan2

Forman Christian College1,University of Punjab2
We developed a nanocomposite scaffold for bone tissue engineering (using bacterial cellulose (BC) and <i>β</i>-glucan (<i>β</i>-G)) <i>via</i> free radical polymerization and freeze-drying technique. Hydroxyapatite nanoparticles (n-HAp) and graphene oxide (GO) were added as reinforcement materials. The structural changes, surface morphology, porosity, and mechanical properties were investigated through spectroscopic and analytical techniques like Fourier transformation infrared (FT-IR), scanning electron microscope (SEM), Brunauer–Emmett-Teller (BET), and universal testing machine Instron. The scaffolds showed remarkable stability, aqueous degradation, spongy morphology, porosity, and mechanical properties. Antibacterial activities were performed against gram -ive and gram + ive bacterial strains. The BgC-1.4 scaffold was found more antibacterial compared to BgC-1.3, BgC-1.2, and BgC-1.1. The cell culture and cytotoxicity were evaluated using the <i>MC3T3</i>-E1 cell line. More cell growth was observed onto BgC-1.4 due to its uniform interrelated pores distribution, surface roughness, better mechanical properties, considerable biochemical affinity towards cell adhesion, proliferation, and biocompatibility. These nanocomposite scaffolds can be potential biomaterials for fractured bones in orthopedic tissue engineering.

Keywords

biomaterial | biomimetic | bone

Symposium Organizers

Eric Glowacki, Central European Institute of Technology
Philipp Gutruf, University of Arizona
John Ho, National University of Singapore
Flavia Vitale, University of Pennsylvania

Symposium Support

Bronze
Diener Electronic GmbH + Co. KG

Session Chairs

Philipp Gutruf
Flavia Vitale

In this Session

SB05.09.02
Biodegradable Gel Electrolyte for Self-Electrified Implantable Biomedical Devices

SB05.09.03
Design, Simulation and Fabrication of Novel Flat-Wire Braided Flow Diverter for Cerebral Aneurysm

SB05.09.04
Porous, Antibacterial and Biocompatible GO/n-HAp/bacterial cellulose/β-glucan Biocomposite Scaffold for Bone Tissue Engineering

SB05.09.05
Comparison of Tensile Properties of Amniotic Membranes Sterilized with Different Techniques

SB05.09.06
An Open-Source Platform for Clinical Autonomic Neuromodulation Therapies

SB05.09.07
A Cellulose Aerogel-Based Drug Delivery System using Punica Granatum Extracts - Invention to Innovation

SB05.09.08
Comparative Analysis of Sterilization Methods for Placenta-Based Products using an Animal Model

SB05.09.09
Soft, Bioresorbable, Transparent Microelectrode Array Platform for Heart Disease Diagnosis and Treatment

SB05.09.10
Structural and Biological Characteristics of a Novel Hydroxyapatite–Sodium Alginate-Based Biocomposite Material for Dental Implants

SB05.09.13
Highly Conductive and Ultra-Thin Elastic Silver-Nanosheet Membrane for Neural Recording

View More »

Publishing Alliance

MRS publishes with Springer Nature