MRS Meetings and Events

 

EN11.09.08 2024 MRS Spring Meeting

AgBiS2 Nanocrystals: An Emerging Chalcogenide Absorber for Solution Processed Ultra-Thin Film Solar Cells

When and Where

Apr 26, 2024
10:30am - 11:00am

Room 335, Level 3, Summit

Presenter

Co-Author(s)

Gerasimos Konstantatos1

ICFO1

Abstract

Gerasimos Konstantatos1

ICFO1
In this talk I will discuss recent progress in our group on the development of a new class of thin film solar cells employing Silver Bismuth Sulfide as an emerging absorber for solution processed eco-friendly solar cells. I will first introduce our first report on AgBiS2 colloidal nanocrystal solar cells reporting power conversion efficiency of ~6% [1]. Then I will discuss on the opportunities of tuning the optical properties of this ternary compound via controlling cation disorder homogenization. We demonstrated that by homogenizing cation disorder in this compound we can drastically increase the absorption coefficient of this material as one with the high absorption amongst the semiconductors considered for photovoltaics. This taken together with advances on the device architecture led us to reach power conversion efficiencies of ~9% albeit using an absorber of only 35 nm [2]. In the last part of my talk I will describe our initial efforts on developing AgBiS<sub>2</sub> nanocrystal inks and their use with environmentally friendly solvents that led us to achieve efficiencies in excess of 7% [3]. I will conclude my talk with our most recent findings towards an improved passivation strategy of AgBiS<sub>2</sub> nanocrystal inks along with the formation of a double heterojunction in the device stack that led to power conversion efficiencies in excess of 10% with Voc of 0.5V, FF of 0.75 and Jsc of 28 mA/cm<sup>2</sup>.<br/>References:<br/>[1] Solution-processed solar cells based on environmentally friendly AgBiS<sub>2</sub> nanocrystals, M Bernechea, N Cates, G Xercavins, D So, A Stavrinadis, G Konstantatos, Nature Photonics 10 (8), 521-525, 2016<br/><br/>[2] Cation disorder engineering yields AgBiS<sub>2</sub> nanocrystals with enhanced optical absorption for efficient ultrathin solar cells, Y Wang, SR Kavanagh, I Burgués-Ceballos, A Walsh, DO Scanlon, G Konstantatos, Nature Photonics 16 (3), 235-241, 2022<br/><br/>[3] Environmentally Friendly AgBiS<sub>2</sub> Nanocrystal Inks for Efficient Solar Cells Employing Green Solvent Processing Y Wang, L Peng, Z Wang, G Konstantatos, Advanced Energy Materials 12 (21), 2200700, 2022

Keywords

thin film

Symposium Organizers

Andrea Crovetto, Technical University of Denmark
Annie Greenaway, National Renewable Energy Laboratory
Xiaojing Hao, Univ of New South Wales
Vladan Stevanovic, Colorado School of Mines

Publishing Alliance

MRS publishes with Springer Nature