MRS Meetings and Events

 

QM03.02.03 2023 MRS Spring Meeting

Nonlinear Terahertz Emission Spectroscopy on Chiral Multifold Semimetals

When and Where

Apr 11, 2023
2:00pm - 2:30pm

Marriott Marquis, Fourth Level, Pacific C

Presenter

Co-Author(s)

Liang Wu1

University of Pennsylvania1

Abstract

Liang Wu1

University of Pennsylvania1
The absence of mirror symmetry, or chirality, is behind striking natural phenomena found in systems as diverse as DNA and crystalline solids. A remarkable example occurs when chiral semimetals with topologically protected band degeneracies are illuminated with circularly polarized light. Under the right conditions, the part of the generated photocurrent that switches sign upon reversal of the light's polarization, known as the circular photogalvanic effect (CPGE), is predicted to depend only on fundamental constants. The conditions to observe quantization are non-universal, and depend on material parameters and the incident frequency. In my talk, I will discuss nonlinear terahertz emission spectroscopy with tunable photon energy from 0.2 eV - 1.1 eV in the chiral topological semimetals CoSi and RhSi. Particularly, we identify a large longitudinal photocurrent peaked at 0.4 eV reaching around 550 μA/V<sup>2</sup> at room tempreture in CoSi , which is much larger than the photocurrent in any chiral crystal reported in the literature. Using first-principles calculations we establish that the peak originates from topological band crossings, reaching 3.3±0.3 in units of the quantization constant. Our calculations indicate that the quantized CPGE is within reach in CoSi upon doping and increase of the hot-carrier lifetime. Finally, I will present our most recent experiments to explore the quantization and interaction effects in these chiral crystals with doping at low temperature.

Keywords

quantum materials | spectroscopy

Symposium Organizers

Matthew Brahlek, Oak Ridge National Laboratory
Yue Cao, Argonne National Laboratory
Brian Skinner, The Ohio State University
Liuyan Zhao, University of Michigan

Publishing Alliance

MRS publishes with Springer Nature