MRS Meetings and Events

 

SB06.02.04 2023 MRS Spring Meeting

DNA Origami Directed Virus Capsid Polymorphism

When and Where

Apr 11, 2023
2:30pm - 2:45pm

Moscone West, Level 2, Room 2020

Presenter

Co-Author(s)

Mauri Kostiainen1

Aalto University1

Abstract

Mauri Kostiainen1

Aalto University1
Most known viruses protect their genome by encapsulating it inside a protein capsid. Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. The assembly process of native capsids is highly cooperative and governed by the protein geometry, protein-protein as well as protein-nucleic acid interactions. Importantly, the absolute control over the size and shape of virus capsids would have imminent advantages in the development of new vaccines and delivery systems. However, tools to direct the assembly process in a programmable manner are exceedingly elusive or strictly limited to specific structures. Here, we introduce a modular approach by demonstrating DNA origami directed polymorphism of single protein subunit capsids. We achieve control over the capsid shape, size, and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms for the capsid proteins. Binding assays and single-particle cryo-electron microscopy reconstruction show that the DNA origami nanoshapes are efficiently encapsulated within the capsid. Further, we observe that helical arrangement of hexameric capsomers is the preferred mode of packing, while a negative curvature of the origami structure is not well tolerated. The capsid proteins assemble on DNA origami in single or double layer configurations depending on the applied stoichiometry. In addition, the obtained viral capsid coatings are able to efficiently shield the encapsulated DNA origami from nuclease degradation and prevent the structures from aggregation. Therefore, these findings may in addition find direct implementations in DNA nanotechnology-based bioengineering by paving the way for the next-generation cargo protection and targeting strategies.

Keywords

biological | nanostructure | transmission electron microscopy (TEM)

Symposium Organizers

Katrina Jolliffe, The University of Sydney
Silvia Marchesan,
Rein Ulijn, City University of New York
Jacek Wychowaniec, AO Research Institute Davos (ARI) | AO Foundation

Symposium Support

Gold
Army Research Office

Bronze
Chem and Matter, Cell Press

Publishing Alliance

MRS publishes with Springer Nature