MRS Meetings and Events

 

EN06.03.04 2023 MRS Spring Meeting

Ultrafast-Sintered Self-Standing LLZO Membranes for High Energy Density Li-Garnet Solid-State Batteries

When and Where

Apr 12, 2023
9:30am - 9:45am

Moscone West, Level 2, Room 2006

Presenter

Co-Author(s)

Huanyu Zhang1,2,Faruk Okur1,2,Kostiantyn Kravchyk1,2,Maksym Kovalenko1,2

ETH Zürich1,Empa–Swiss Federal Laboratories for Materials Science and Technology2

Abstract

Huanyu Zhang1,2,Faruk Okur1,2,Kostiantyn Kravchyk1,2,Maksym Kovalenko1,2

ETH Zürich1,Empa–Swiss Federal Laboratories for Materials Science and Technology2
Towards building non-flammable and temperature-tolerant Li-ion batteries with high energy density, Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) has recently attracted considerable attention as a compelling solid-state Li-ion electrolyte (SSE) due to its high thermal stability, Li-ion conductivity of up to 1 mS cm<sup>−1</sup> (RT), and a wide electrochemical operation window of 0–6 V <i>vs</i>. Li<sup>+</sup>/Li.<sup>[1, 2]</sup> Additionally, unlike other Li-ion soft solid conductors such as those based on sulfides, LLZO SSE can be manufactured with a bilayer dense-porous microstructure, which prevents the issues of dynamic volume change of the Li anode and the formation of voids at the Li/SSE interface during cycling and thus eliminates the need for external pressure.<sup>[3, 4]</sup> Here we report a facile, ultrafast sintering methodology for the fabrication of LLZO solid-state electrolyte in the form of self-standing bilayer dense-porous LLZO membranes. The thickness of the produced dense and porous layers was <i>ca</i>. 8 µm and 55 µm, which hypothetically allows to achieve high gravimetric and volumetric energy densities of Li-garnet batteries of 202 Wh kg<sup>−1</sup> and 715 Wh L<sup>−1</sup> (in combination with an NMC111/LiFSI-Pyr<sub>13</sub>FSI cathode). Electrochemical measurements confirmed that produced LLZO membranes possess high critical current density up to 1.7 mA cm<sup>−2</sup> and cycling stability of over 45 cycles at a current density of 0.1 mA cm<sup>−2</sup>.<br/><br/><b>References</b><br/><br/>[1] R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y. E. Romanyuk, L. P. H. Jeurgens, M. V. Kovalenko, K. V. Kravchyk, <i>Adv. </i><i>Energy Mater</i>. <b>2021</b>, 2102086.<br/>[2] S. Afyon, K. V. Kravchyk, S. Wang, J. v. d. Broek, C. Hänsel, M. V. Kovalenko, J. L. M. Rupp, <i>J. Mater. </i><i>Chem</i>. A <b>2019</b>, 7, 21299.<br/>[3] K. V. Kravchyk, F. Okur, M. V. Kovalenko, <i>ACS Energy Lett</i>. <b>2021</b>, 2202.<br/>[4] K.V. Kravchyk, H. Zhang, F. Okur, M.V. Kovalenko, <i>Acc. </i><i>Mater. Res., </i><b>2022</b>, 3, 4, 411–415.

Keywords

sintering

Symposium Organizers

Ali Coskun, University of Fribourg
Haegyeom Kim, Lawrence Berkeley National Laboratory
Valentina Lacivita, Lawrence Berkeley National Laboratory
Jinhyuk Lee, McGill University

Symposium Support

Silver
Hydro-Québec
SPHERE ENERGY

Bronze
BioLogic
MilliporeSigma

Publishing Alliance

MRS publishes with Springer Nature