MRS Meetings and Events

 

EL01.01.01 2023 MRS Spring Meeting

Phase-Change and Ovonic Chalcogenide Materials for Innovative Electronic and Photonic Devices

When and Where

Apr 11, 2023
10:30am - 11:00am

Moscone West, Level 3, Room 3001

Presenter

Co-Author(s)

Pierre Noé1

CEA-LETI1

Abstract

Pierre Noé1

CEA-LETI1
Chalcogenide materials have attracted a lot of attention over the years due to their wide range of applications. Among them, some compounds such as Ge-Sb-Te based alloys exhibit a unique portfolio of properties, which has led to their wide use for non-volatile memory applications such as optical data storage or more recently resistive phase change memory (PCM) [1,2]. In addition to a high IR transparency window and large optical nonlinearities [3], some chalcogenide glasses such as Se-based compounds exhibit an uncommon conductivity behavior under high electric field, called ovonic threshold switching effect (OTS) [4].<br/>In this talk, I will show that materials science research through the coupling of advanced characterization tools, device characterization, and state-of-the-art simulation methods provides a powerful tool to correlate the complex structure, from long-range to local nanoscale/atomic order, and properties of prototypical chalcogenide compounds and heterostructures [5-9]. I will illustrate how such an approach applied to various chalcogenide materials used in PC memories, OTS selection devices, or photonics, provides valuable clues to understand the origin of their unique properties widely exploited so far in state-of-the-art memory devices, as well as the possibilities to go far beyond. Finally, based on this basic knowledge, we will propose new technological avenues to tailor the properties of chalcogenides, from atomic engineering to nanostructuring [10-12], to improve some of their macroscopic properties and overcome the many current technological challenges they face in many applications, while opening up new fields of application [13].<br/><br/>1. P. Noé <i>et al.</i>, <i>Semicond. Sci. Technol.</i> <b>33</b>, 013002, (2018). doi: 10.1088/1361-6641/aa7c25<br/>2. P. Noé et F. Hippert, in <i>Phase Change Memory: Device Physics, Reliability and Applications</i>, A. Redaelli, Éd. Cham: Springer International Publishing, 2018, p. 125-179. doi: 10.1007/978-3-319-69053-7_6.<br/>3. J.-B. Dory <i>et al.</i>,, <i>Scientific Reports</i> <b>10</b>, 11894, (2020). doi: 10.1038/s41598-020-67377-9.<br/>4. P. Noé <i>et al.</i>, <i>Science Advances</i> <b>6</b>, eaay2830 (2020). doi: 10.1126/sciadv.aay2830.<br/>5. F. d’Acapito <i>et al.</i>, <i>J. Phys. D: Appl. Phys.</i> <b>53</b>, 404002 (2020). doi: 10.1088/1361-6463/ab98c1.<br/>6. A. N. D. Kolb <i>et al.</i>, <i>ACS Appl. Electron. Mater</i>. <b>1</b>, 701-710 (2019). doi: 10.1021/acsaelm.9b00070.<br/>7. P. Kowalczyk <i>et al.</i>, <i>Small</i> <b>14</b>, 1704514 (2018). doi: 10.1002/smll.201704514.<br/>8. R. Berthier <i>et al.</i>, <i>Journal of Applied Physics</i> <b>122</b>, 115304 (2017). doi: 10.1063/1.5002637.<br/>9. P. Martinez <i>et al.</i>, <i>Advanced Materials</i> <b>33</b>, 2102721 (2021). doi: 10.1002/adma.202102721.<br/>10. D. Térébénec <i>et al.</i>, <i>physica status solidi (RRL) – Rapid Research Letters</i> 2200054 (2022). doi: 10.1002/pssr.202200054.<br/>11. M. Tomelleri <i>et al.</i>, <i>physica status solidi (RRL) – Rapid Research Letters</i> <b>15</b>, 2000451 (2021). doi: 10.1002/pssr.202000451.<br/>12. D. Térébénec <i>et al.</i>, <i>physica status solidi (RRL) – Rapid Research Letters</i> <b>15</b>, 2000538 (2021) doi: 10.1002/pssr.202000538.<br/>13. P. Martinez <i>et al.</i>, <i>Advanced Materials</i> <b>32</b>, 2003032 (2020). doi: 10.1002/adma.202003032.

Keywords

Te

Symposium Organizers

Stefania Privitera, CNR
Carlos Ríos, University of Maryland
Syed Ghazi Sarwat, IBM
Matthias Wuttig, RWTH Aachen University

Publishing Alliance

MRS publishes with Springer Nature