MRS Meetings and Events

 

SB05.13.01 2023 MRS Fall Meeting

Photosynthetic Microorganisms for Optoelectronics

When and Where

Nov 30, 2023
1:30pm - 2:00pm

Hynes, Level 1, Room 102

Presenter

Co-Author(s)

Gianluca Maria Farinola1

Universita' degli Studi di Bari Aldo Moro1

Abstract

Gianluca Maria Farinola1

Universita' degli Studi di Bari Aldo Moro1
Photosynthetic microorganisms and their molecular components for light absorption and photoconversion, optimized over billions of years of evolution, represent attractive tools for harvesting and conversion of solar light in sustainable and cost-effective transducers. The new era of biohybrid devices relies on the exploitation of isolated structures from these microorganisms, or the entire living cells, as the active components for photoconversion in optoelectronic devices and photoelectrochemical cells [1].<br/>The bacterial reaction center (RC) extracted from the purple non-sulphur bacterium <i>Rhodobacter (R.) sphaeroides</i> has been initially modified by covalent functionalization with organic molecules specifically designated to act as artificial antennas to increase its light absorption capability [2].<br/>The same RC has been also integrated into photoactive transistors [3], using molecular or polymeric semiconductor thin films deposited onto metal electrodes as interfaces [4]. Among them polydopamine (PDA), a biocompatible polymer produced <i>via </i>self-oxidative polymerization of the dopamine monomer, gave very interesting results for the stabilization of <i>R. sphaeroides </i>RCs. RC has been immobilized both in PDA thin films on the electrode surfaces or in PDA nanoparticles, without altering the enzymatic photoactivity, and producing photocurrents in photoelectrochemical cells [5]. PDA has been modified with diamines, leading to more transparent nanostructures incorporating RC molecules, which outperform RC/PDA structures in light transmission and photoconversion [6].<br/>Finally, we have been investigated different approaches for interfacing intact photosynthetic microorganisms with electrodes, enabling photoconversion of whole living cells of <i>R. sphaeroides </i>and <i>R. capsulatus</i>, using PDA as the interface material either as a coating on the cells’ surface, or as a film entrapping the cells on the electrode surface [7].<br/>Furthermore, eukaryotic diatoms have been also selected for their efficiency in harvesting and converting sunlight into chemical energy and the feasibility of silica shell functionalization. Electrochemical characterizations have been performed to understand the electronic transfer between diatoms and electrodes, using different redox mediators.<br/><br/>[1] F. Milano, A. Punzi, R. Ragni, M. Trotta, G. M. Farinola, <i>Adv. Funct. Mater</i>., <b>29</b>, 1805521, (2019).<br/>[2] F. Milano, R.R. Tangorra, O. Hassan Omar, R. Ragni, A. Operamolla, A. Agostiano, G.M. Farinola, M. Trotta, <i>Angew. Chem.</i> Int. Ed., 51: 11019-11023 (2012)<br/>[3] M. Di Lauro, S. la Gatta, C.A. Bortolotti, V. Beni, V. Parkula, S. Drakopoulou, M. Giordani, M. Berto, F. Milano, T. Cramer, M. Murgia, A. Agostiano, G.M. Farinola, M. Trotta, F. Biscarini “A Bacterial Photosynthetic Enzymatic Unit Modulating Organic Transistors with Light”, Adv. Electronic Mater. <b>6 </b>(1), 1900888 (2020).<br/>[4] E. D. Glowacki, R. R. Tangorra, H. Coskun, D. Farka, A. Operamolla, Y. Kanbur, F. Milano, L. Giotta and N. S. Sariciftci “Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins”, J. Mater. Chem. C, <b>3 </b>(25), 6554-6564 (2015).<br/>[5] M. Lo Presti, M. M. Giangregorio, R. Ragni, L. Giotta, M. R. Guascito, R. Comparelli, E. Fanizza, R. R. Tangorra, A. Agostiano, M. Losurdo, G. M. Farinola, F.Milano, M. Trotta “Photoelectrodes with Polydopamine Thin Films Incorporating a Bacterial Photoenzyme”, Adv. Electron. Mater. 2000140 (2020).<br/>[6] G. Buscemi, D. Vona, R. Ragni, R. Comparelli, M. Trotta, F. Milano, G. M. Farinola “Polydopamine/Ethylenediamine Nanoparticles Embedding a Photosynthetic Bacterial Reaction Center for Efficient Photocurrent Generation”, Adv. Sustain. Syst., doi.org/<b>10.1002/adsu.202000303 </b>(2021).<br/>[7] G. Buscemi, D. Vona, P. Stufano, R. Labarile, P. Cosma, A. Agostiano, M. Trotta, G.M. Farinola, M. Grattieri. Bio-inspired redox-adhesive polydopamine matrix for intact bacteria biohybrid photoanodes. ACS Applied Materials & Interfaces, 2022, 14(23), pp. 26631–26641

Symposium Organizers

Herdeline Ann Ardoña, University of California, Irvine
Guglielmo Lanzani, Italian Inst of Technology
Eleni Stavrinidou, Linköping University
Flavia Vitale, University of Pennsylvania

Symposium Support

Bronze
iScience | Cell Press

Publishing Alliance

MRS publishes with Springer Nature