MRS Meetings and Events

 

QT03.03.02 2023 MRS Fall Meeting

Nonreciprocal Edge Transport in Superconducting Devices with Magnetic Control

When and Where

Nov 27, 2023
8:00pm - 10:00pm

Hynes, Level 1, Hall A

Presenter

Co-Author(s)

Junyi Zhao1,Kieran Bozier1,Anna Chesca1,Hisakazu Matsuki1,Adrian Ionescu1,Leyla Arslan2,Nadia Stelmashenko1,Francesca Chiodi3,Jason Robinson1

University of Cambridge1,Gebze Technical University2,Université Paris-Saclay3

Abstract

Junyi Zhao1,Kieran Bozier1,Anna Chesca1,Hisakazu Matsuki1,Adrian Ionescu1,Leyla Arslan2,Nadia Stelmashenko1,Francesca Chiodi3,Jason Robinson1

University of Cambridge1,Gebze Technical University2,Université Paris-Saclay3
The proximity effect at a superconductor interface with a ferromagnet layer (S/F) can lead to unconventional electron pairing [1-3] and nonreciprocal edge transport (i.e., a superconducting diode effect (SDE)) [4,5]. The underlying mechanism of the SDE can have mixed origins related to spin-orbit coupling (SOC) or vortex flow with a geometrically asymmetric pinning potential in S and at S/F interfaces in mesoscopic wires [6-8]. Here we report an experimental investigation of the SDE and edge transport in superconducting (Nb, V and RhS) wires interfacial magnetism and/or Rashba SOC versus layer thickness, wire width, temperature and microstructure. The F layer in conjunction with interfacial SOC should affect the pinning potential along the edge regions of an S/F wire and modulate vortex dynamics, driving a nonreciprocal supercurrent [9,10]. Our experiments form a framework for understanding and optimizing the SDE in superconducting wires with the aim of achieving full magnetic control of charge and potentially spin for superconducting quantum devices.<br/><br/>[1] J. Linder and J. W. A. Robinson, Nature Physics 11, 307 (2015).<br/>[2] S. Komori et al., Science Advances 7, eabe0128 (2021).<br/>[3] L. A. B. Olde Olthof, L. G. Johnsen, J. W. A. Robinson, and J. Linder, Physical Review Letters 127, 267001 (2021).<br/>[4] S. Ilić and F. S. Bergeret, Physical Review Letters 128, 177001 (2022).<br/>[5] K.-R. Jeon, J.-K. Kim, J. Yoon, J.-C. Jeon, H. Han, A. Cottet, T. Kontos, and S. S. P. Parkin, Nature Materials 21, 1211 (2022).<br/>[6] Y. Hou et al., 2022), p. arXiv:2205.09276.<br/>[7] N. Satchell, P. Shepley, M. Rosamond, and G. Burnell, Journal of Applied Physics 133 (2023).<br/>[8] A. Gutfreund et al., Nature Communications 14, 1630 (2023).<br/>[9] M. K. Hope, M. Amundsen, D. Suri, J. S. Moodera, and A. Kamra, Physical Review B 104, 184512 (2021).<br/>[10] L. A. B. Olde Olthof, X. Montiel, J. W. A. Robinson, and A. I. Buzdin, Physical Review B 100, 220505 (2019).

Keywords

electrical properties | thin film

Symposium Organizers

Shelly Michele Conroy, Imperial College London
Sinead Griffin, Lawrence Berkeley National Laboratory
Dennis Meier, Norwegian University of Science and Technology (NTNU)
Haidan Wen, Argonne National Laboratory

Publishing Alliance

MRS publishes with Springer Nature