MRS Meetings and Events

 

QT01.04.01 2022 MRS Spring Meeting

Hot Carrier and Phonon Relaxation Dynamics for Photovoltaics

When and Where

May 11, 2022
8:30am - 9:00am

Hawai'i Convention Center, Level 3, 304B

Presenter

Co-Author(s)

Maxime Giteau5,3,Daniel Suchet1,2,3,Hamidreza Esmaielpour2,4,Thomas Vezin1,2,Laurent Lombez6,4,3,Jean-François Guillemoles2,4,3

École Polytechnique1,Institut du photovoltaïque d'Ile de France2,NextPV3,Centre National de la Recherche Scientifique4,The University of Tokyo5,Laboratoire de Physique et Chimie des Nano-objets6

Abstract

Maxime Giteau5,3,Daniel Suchet1,2,3,Hamidreza Esmaielpour2,4,Thomas Vezin1,2,Laurent Lombez6,4,3,Jean-François Guillemoles2,4,3

École Polytechnique1,Institut du photovoltaïque d'Ile de France2,NextPV3,Centre National de la Recherche Scientifique4,The University of Tokyo5,Laboratoire de Physique et Chimie des Nano-objets6
Photovoltaic (PV) energy conversion relies on the formation of carriers’ populations out of equilibrium with their environment under continuous illumination. Conventional PV takes advantage of a non-equilibrium population which translates into a quasi-Fermi level splitting to generate a photo voltage. By contrast, hot carrier solar cells build a out-of-equilibrium temperature which in turn increases to photovoltage and allows in theory to reach power conversion efficiency exceeding the Shockley Queisser limit. To achieve such an imbalance, it is necessary to impede the net energy relaxation of photo-generated carriers, which largely takes place through phonon interactions. Several strategies have been considered and successfully implemented to obtain a hot carrier effect in III-V materials, notably by optimizing the absorber’s architecture [1], by introducing nanostructures [2], by tailoring the acoustic phonon density of states [3] or by relying on intervalley scattering [4].<br/>In this presentation, I will present how hot carriers’ relaxation and transport are modelled using both empirical and theoretical models [5-7]. An emphasis will be set on the optical assessment of hot carriers’ thermodynamic properties using photoluminescence measurements with absolute calibration [6]. This will allow comparison between models and experimental data on a variety of heterostructures.<br/>[1] M. Giteau <i>et al.</i>, <i>J. Appl. Phys.</i>, 2020<br/>[2] D.-T. Nguyen <i>et al.</i>, <i>Nat. Energy</i>, 2018<br/>[3] H. Esmaielpour <i>et al.</i>, <i>Appl. Phys. Lett, </i>2021.<br/>[4] H. Esmaielpour <i>et al.</i>, <i>Nat. Energy</i>, 2020.<br/>[5] A. Le Bris <i>et al</i>, <i>Energy & Environ. Sc.</i>, 2012.<br/>[6] H. Esmaielpour <i>et al.</i>,<i>J. Appl. </i><i>Phys.</i>, 2020.<br/>[7] F. Gibelli <i>et al.</i>, <i>Phys. </i><i>Rev. Appl. </i>, 2016

Keywords

nanostructure | thermodynamics

Symposium Organizers

Michael Nielsen, UNSW Sydney
Annamaria Petrozza, Istituto Italiano di Tecnologia
Ian Sellers, University of Oklahoma
Emiliano Cortés, University of Munich

Session Chairs

Rebecca Schiedt
Ian Sellers

In this Session

Publishing Alliance

MRS publishes with Springer Nature