MRS Meetings and Events

 

SB08.13.01 2022 MRS Fall Meeting

Chemical Decoration of Living Microalgae for Bioremediation

When and Where

Dec 6, 2022
10:30am - 11:00am

SB08-virtual

Presenter

Co-Author(s)

Danilo Vona1,Cesar Vicente-Garcia1,Pietro Cotugno1,Emiliano Altamura1,Stefania Cicco2,Roberta Ragni1,Gianluca Maria Farinola1

Università degli Studi di Bari Aldo Moro1,CNR-ICCOM2

Abstract

Danilo Vona1,Cesar Vicente-Garcia1,Pietro Cotugno1,Emiliano Altamura1,Stefania Cicco2,Roberta Ragni1,Gianluca Maria Farinola1

Università degli Studi di Bari Aldo Moro1,CNR-ICCOM2
Many microorganisms produce specific protection structures, known as spores or cysts, exploited to increase their resistance to adverse environmental conditions. Scientists started to produce biomimetic materials inspired by these natural membranes, especially for industrial and biomedical applications.[1] Diatoms, for instance, are marine organisms able to uptake inorganic silicates from the ocean in order to build highly porous biosilica shells, called frustules, at mild environmental conditions. Diatoms shells, exploited for years for producing biohybrid materials for applications in photonics, optoelectronics and biomaterial science, can be chemically decorated via the common surface silanization reactions or the in vivo incorporation of functional organic molecules.[2] Our group has managed to obtain, via green processing, phosphorescent nanoparticles and fluorescent biosilica with specific optical features starting from simple feeding of diatoms with new synthesis fluorescent dyes [3-5]. We also produced 2D diatoms-based scaffolds for tissue engineering applications, after in vivo functionalization of living algae with pharmacological molecules like bisphosphonates, active towards osteogenic promotion and against osteo-resorption and bone degradation. [6-7] In this abstract we present biological data on the biocompatibility of a polydopamine-based artificial coating with diatom cells. Here living Thalassiosira weissflogii [8] cells were individually encapsulated with soft, artificial and easily functionalizable polydopamine layers with adhesive properties similar to feet proteins found in mussels. Polydopamine did not strongly interfere with diatom cells growth kinetics, and it can be exploited for entrapping detoxifying agents, like natural enzymes, and magnetic nanoparticles useful for living cells recovery after the decontamination process. These outcomes pave the way to the use of living diatom cells in the area of biomedicine, cell-based sensors and natural, and living devices for bioremediation. Polydopamine does not only confer certain sorption properties towards pollutants to surfaces [9], but it can encapsulate degrading functions, like catalytically active nanoparticles or enzymes, which bio-transform pollutants into small non toxic organic molecules.<br/><br/><b>Aknowledgements:</b> D.V. acknowledges the financial support from Fondo Sociale Europeo “Research for Innovation (REFIN)”; project n°87429C9C - Alghe vive per la bonifica dell’ambiente marino (AlgAmbiente).<br/><br/><b>References</b><br/><br/>[1] Lo Presti, M., Vona, D., Ragni, R., Cicco, S.R., Farinola, G.M. MRS Comm. 11, 213–225 (2021).<br/>[2] Ragni, R., Cicco, S.R., Vona, D. and Farinola, G.M. Adv. Mater. 1704289,1-23 (2017).<br/>[3] Leone, G., De la Cruz Valbuena, G., Cicco, S. R., Vona, D., Altamura, E., Ragni, R., Molotokaite, E., Cecchin, M., Cazzaniga, S., Ballottari, M., D'Andrea, C., Lanzani, G. Sci. Rep. 11 (1), 5209 (2021).<br/>[4] Ragni, R., Scotognella, F., Vona, D., Moretti, L., Altamura, E., Ceccone, G., Mehn, D., Cicco, S.R., Palumbo, F., Lanzani, G., Farinola, G.M. Adv. Funct. Mater., 28 (24), 1706214 (2018).<br/>[5] Della Rosa, G., Vona, D., Aloisi, A., Ragni, R., Di Corato, R., Lo Presti, M., Cicco, S. R., Altamura, E., Taurino, A., Catalano, M. and Farinola, G. M. ACS Sustain Chem Eng, 7, 2, 2207–2215 (2018).<br/>[6] Cicco, S.R., Vona, D., De Giglio, E., Cometa, S., Mattioli Belmonte, M., Palumbo, F., Ragni, R. and Farinola, G.M., Chem Plus Chem, 80, 1104–1112 (2015).<br/>[7] Cicco, S.R., Vona, D., Leone, G., De Giglio, E, Bonifacio M., Cometa, S, Fiore, S. Palumbo, F, Ragni, R., Farinola, G.M., Materials Science & Engineering C 104 109897 (2019).<br/>[8] Vona, D., Cicco, S.R., Ragni, R., Vicente-Garcia, C., Leone, G., Giangregorio, M.M., Palumbo, F., Altamura, E., Farinola, G.M. Photochem. Photobiol. Sci. 21, 949–958 (2022).<br/>[9] Aresta, A., Cicco, S.R., Vona, D., Farinola, G.M., Zambonin, C. Separations, 9(8), 194 (2022).

Keywords

chemical composition

Symposium Organizers

Gianluca Maria Farinola, Universita' degli Studi di Bari Aldo Moro
Chiara Ghezzi, University of Massachusetts Lowell
Fiorenzo Omenetto, Tufts University
Silvia Vignolini, University of Cambridge

Symposium Support

Gold
Science Advances | AAAS

Publishing Alliance

MRS publishes with Springer Nature