MRS Meetings and Events

 

DS03.06.01 2022 MRS Fall Meeting

Autonomous Scanning Probe Microscopy—from Imaging to Learning Physics of Local Bias-Induced Transformations in Functional Materials

When and Where

Nov 29, 2022
1:30pm - 2:00pm

Hynes, Level 2, Room 206

Presenter

Co-Author(s)

Sergei Kalinin1

University of Tennessee, Knoxville1

Abstract

Sergei Kalinin1

University of Tennessee, Knoxville1
Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. However, the constantly emerging question is how to match the correlative nature of classical ML with hypothesis-driven causal nature of physical sciences. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics through self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiment (AE) in imaging. Here, I will discuss recent progress in automated experiment in scanning probe microscopy, ranging from feature to physics discovery via active learning. The applications of classical deep learning methods in streaming image analysis are strongly affected by the out of distribution drift effects, and the approaches to minimize though are discussed. I will further illustrate transition from post-experiment data analysis to active learning process, including learning structure-property relationships and materials discovery in composition spread libraries. Here, the strategies based on simple Gaussian Processes often tend to produce sub-optimal results due to the lack of prior knowledge and very simplified (via learned kernel function) representation of spatial complexity of the system. Comparatively, deep kernel learning (DKL) and structured Gaussian Processes methods allow to realize both the exploration of complex systems towards the discovery of structure-property relationship, and enable automated experiment targeting physics (rather than simple spatial feature) discovery. The latter is illustrated via experimental discovery of ferroelectric domain dynamics in piezoresponse force microscopy. For probing physical mechanisms of tip-induced modifications, I will demonstrate the combination of the structured Gaussian process and reinforcement learning, the approach we refer to as hypothesis learning. Here, this approach is used to learn the domain growth laws on a fully autonomous microscope. The future potential of Bayesian active learning for autonomous microscopes is discussed.

Keywords

autonomous research

Symposium Organizers

Arun Kumar Mannodi Kanakkithodi, Purdue University
Sijia Dong, Northeastern University
Noah Paulson, Argonne National Laboratory
Logan Ward, University of Chicago

Symposium Support

Silver
Energy Material Advances, a Science Partner Journal

Bronze
Chemical Science | Royal Society of Chemistry
Patterns, Cell Press

Publishing Alliance

MRS publishes with Springer Nature