MRS Meetings and Events

 

SF02.19.06 2022 MRS Fall Meeting

Architected Materials under Extreme Impact Conditions

When and Where

Dec 2, 2022
4:30pm - 4:45pm

Hynes, Level 3, Room 310

Presenter

Co-Author(s)

Carlos Portela1,Thomas Butruille1

Massachusetts Institute of Technology1

Abstract

Carlos Portela1,Thomas Butruille1

Massachusetts Institute of Technology1
Ultralight mechanical metamaterials enabled by advanced manufacturing processes have previously achieved density-normalized strength and stiffness properties that are inaccessible to bulk materials, but the majority of this work has focused on static loading while the mechanical properties of these metamaterials under dynamic loading conditions have remained largely unexplored. Properties such as energy absorption of these metamaterials are of high interest for protective applications and recent works on their dynamic response have demonstrated the benefit of architecture for impact mitigation. <br/> <br/>Here, we systematically study the response of metamaterials under microprojectile impact using two-photon lithography as a rapid prototyping technique for microscopic polymeric microlattices. We fabricate suspended thin-plate lattice architectures of varying thicknesses and morphologies to characterize their response to microparticle impact. We employ the laser-induced particle impact test method to accelerate ~30 μm-diameter microparticles to velocities of up to 800 m/s, and use ultra high-speed imaging of the impact process to measure impact energetics. To isolate the effect of architecture, we maintain a constant relative density across prototypes and probe them with a range of impact energies. Additionally, we analyze our experiments in a dimensionless framework to provide a first-order estimate of impact response across materials and length scales. Lastly, we study the impact response using an explicit dynamics finite-element representation to provide insight on the impact mechanisms. This investigation provides a framework for the rapid design and characterization of future metamaterials for a variety of energy absorption applications.

Keywords

cellular (material form)

Symposium Organizers

Ke Han, Florida State Univ
Alexander Goncharov, Carnegie Instution of Washington
Florence Lecouturier-Dupouy, CNRS-LNCMI
Wenge Yang, Center for High Pressure Science & Technology Advanced Research

Publishing Alliance

MRS publishes with Springer Nature