MRS Meetings and Events

 

EQ03.03.01 2022 MRS Fall Meeting

Strong Light-Matter Interactions in Low-Dimensional Excitonic Semiconductors

When and Where

Nov 27, 2022
1:30pm - 2:00pm

Hynes, Level 2, Room 202

Presenter

Co-Author(s)

Deep Jariwala1

University of Pennsylvania1

Abstract

Deep Jariwala1

University of Pennsylvania1
The isolation of stable atomically-thin two-dimensional (2D) crystals has led to a revolution in solid state physics and semiconductor device research over the past decade. A variety of other 2D materials (including semiconductors) with varying properties have been isolated raising the prospects for devices assembled by van der Waals forces.<sup>1</sup> Particularly, these van der Waals bonded semiconductors exhibit strong excitonic resonances and large optical dielectric constants as compared to bulk 3D semiconductors.<br/>I will focus this talk on our recent works in strong light-matter coupling in excitonic 2D semiconductors, namely chalcogenides of Mo and W. Visible spectrum band-gaps with strong excitonic absorption makes transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as attractive candidates for investigating strong light-matter interaction formation of hybrid states.<sup>2-4</sup> We will present our recent work on the fundamental physics of light trapping in multi-layer TMDCs when coupled to plasmonic substrates.<sup>5</sup><br/>Then, I will show the extension of these results to superlattices of excitonic chalcogenides. These hybrid multilayers offer a unique opportunity to tailor the light-dispersion in the strong-coupling regime.<sup>6</sup> We will discuss the physics of strong light-matter coupling and applications of these multilayers. If time permits, I will also present our recent work on scalable, localized quantum emitters from strained 2D semiconductors.<sup>7</sup><br/>Our results highlight the vast opportunities available to tailor light-matter interactions<sup>8</sup> and building practical devices with 2D semiconductors. I will conclude with a broad vision and prospects for 2D materials in the future of semiconductor electronics and opto-electronics<br/><br/><b>References:</b><br/>1. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. <i>ACS Nano </i><b>2014,</b> 8, (2), 1102–1120.<br/>2. Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. <i>ACS Photonics </i><b>2017,</b> 4, 2692-2970.<br/>3. Brar, V. W.; Sherrott, M. C.; Jariwala, D. <i>Chemical Society Reviews </i><b>2018,</b> 47, (17), 6824-6844.<br/>4. Anantharaman, S. B.; Jo, K.; Jariwala, D. <i>ACS Nano </i><b>2021</b>.<br/>5. Zhang, H.; Abhiraman, B.; Zhang, Q.; Miao, J.; Jo, K.; Roccasecca, S.; Knight, M. W.; Davoyan, A. R.; Jariwala, D. <i>Nature Communications </i><b>2020,</b> 11, (1), 3552.<br/>6. Kumar, P.; Lynch, J.; Song, B.; Ling, H.; Barrera, F.; Zhang, H.; Anantharaman, S. B.; Digani, J.; Zhu, H.; Choudhury, T. H.; McAleese, C.; Wang, X.; Conran, B. R.; Whear, O.; Motala, M.; Snure, M.; Muratore, C.; Redwing, J. M.; Glavin, N.; Stach, E. A.; Davoyan, A. R.; Jariwala, D. <i>Nature nanotechnology </i><b>2022,</b> 17 182–189.<br/>7. Kim, G.; Kim, H. M.; Kumar, P.; Rahaman, M.; Stevens, C. E.; Jeon, J.; Jo, K.; Kim, K.-H.; Trainor, N.; Zhu, H.; Sohn, B.-H.; Stach, E. A.; Hendrickson, J. R.; Glavin, N.; Suh, J.; Redwing, J. M.; Jariwala, D. <i>ACS Nano </i><b>2022,</b> 10.1021/acsnano.2c02974.<br/>8. Zhang, H.; Ni, Z.; Stevens, C. E.; Bai, A.; Peiris, F.; Hendrickson, J. R.; Wu, L.; Jariwala, D. <i>Nature Photonics </i><b>2022,</b> 16, 311-317.<br/>&lt;!--![endif]----&gt;

Keywords

2D materials

Symposium Organizers

Yu-Jung Lu, Academia Sinica
Artur Davoyan, University of California, Los Angeles
Ho Wai Howard Lee, University of California, Irvine
David Norris, ETH Zürich

Symposium Support

Gold
Enli Technology Co., Ltd.

Bronze
ACS Photonics
De Gruyter
Taiwan Semiconductor Manufacturing Company

Publishing Alliance

MRS publishes with Springer Nature