MRS Meetings and Events

 

CH03.04.09 2022 MRS Fall Meeting

A Mesoporous Ternary Transition Metal Oxide Nanoparticle Composite for High-Performance Asymmetric Supercapacitor Devices with High Specific Energy

When and Where

Nov 28, 2022
8:00pm - 10:00pm

Hynes, Level 1, Hall A

Presenter

Co-Author(s)

Manar Hazaa1,Allam Nageh1

The American University in Cairo1

Abstract

Manar Hazaa1,Allam Nageh1

The American University in Cairo1
We report on the optimized fabrication and electrochemical properties of ternary metal oxide (Ti–Mo–Ni–O) nanoparticles as electrochemical supercapacitor electrode materials. The structural, morphological, and elemental composition of the fabricated Ti–Mo–Ni–O via rapid breakdown anodization are elucidated by field emission scanning electron microscopy, Raman, and photoelectron spectroscopy analyses. The Ti–Mo–Ni–O nanoparticles reveal pseudocapacitive behavior with a specific capacitance of 255.4 F g<sup>−1</sup>. Moreover, the supercapacitor device Ti–Mo–Ni–O NPs//mesoporous doped-carbon (TMN NPs//MPDC) device exhibited a superior specific energy of 68.47 W h kg<sup>−1</sup> with a corresponding power density of 2058 W kg<sup>−1</sup>. The supercapacitor device shows 100% coulombic efficiency with 96.8% capacitance retention over 11000 prolonged charge/discharge cycles at 10 A g<sup>−1</sup>.

Keywords

chemical composition | electrochemical synthesis

Symposium Organizers

Peng Bai, Washington University in St. Louis
Donal Finegan, National Renewable Energy Laboratory
Hui Xiong, Boise State University
Yuan Yang, Columbia University

Symposium Support

Silver
Carl Zeiss Microscopy

Session Chairs

Peng Bai
Hui Xiong

In this Session

CH03.04.01
Quantitative Evaluations of Reaction Heterogeneities in Thick Battery Electrodes Using Operando Focused Beam X-Ray Diffraction

CH03.04.02
Interfacial Studies of Silicon Anode Cycling and Solid Electrolyte Interphase (SEI) Formation on Highly Curved Surfaces

CH03.04.03
Beyond the Water Electrolysis Potential—A Systematic Study for Different Ionic Carriers on the Electrolyte Performance for Free-Standing Carbon Nanotube Supercapacitors

CH03.04.04
Understanding and Controlling Interfacial Reactivity of Silicon Electrodes—Impact of Electrode and Electrolyte Composition

CH03.04.05
Characteristic Dual-Domain Structure of Reduced Graphene Oxide and Its Guidance to Higher Specific Capacitance

CH03.04.06
Synergetic Effect of Surface-Controlled and Diffusion-Controlled Charge Processes of NiP/CoP@NF for High Energy Density Supercapacitor

CH03.04.08
Observation of Ir 5d Orbitals in Epitaxial IrO2 Thin Films Using Resonant Inelastic X-Ray Scattering

CH03.04.09
A Mesoporous Ternary Transition Metal Oxide Nanoparticle Composite for High-Performance Asymmetric Supercapacitor Devices with High Specific Energy

CH03.04.10
Highly Stable Supercapacitor Devices Based on Three-Dimensional Bioderived Carbon Encapsulated g-C3N4 Nanosheets

CH03.04.11
NMC Microparticles with Core-Shell Structure for Cathodes in Li-Ion Batteries

View More »

Publishing Alliance

MRS publishes with Springer Nature