MRS Meetings and Events

 

CH03.07.01 2022 MRS Fall Meeting

Designing Cathode Microstructures in Lithium Batteries

When and Where

Nov 29, 2022
3:15pm - 3:45pm

Hynes, Level 1, Room 103

Presenter

Co-Author(s)

Feng Lin1

Virginia Tech1

Abstract

Feng Lin1

Virginia Tech1
The propagation of redox reactions governs the electrochemical properties of battery materials and their critical performance metrics in battery cells. The recent research progress, especially aided by advanced analytical techniques, has revealed that incomplete and heterogeneous redox reactions prevail in many electrode materials. Advanced high-capacity cathode materials are mostly polycrystalline materials that exhibit complex charge distribution (the valence state distribution of the redox-active cations) due to the presence of numerous constituting grains and grain boundaries. The redox reactions in individual grains typically do not proceed concurrently due to their distinct geometric locations in polycrystalline particles. As a result, these unsynchronized local redox events collectively induce heterogeneous and anisotropic charge distribution, building up intergranular and intragranular stress. Therefore, these polycrystalline materials may exhibit weak mechanical stability, leading to undesired chemomechanical breakdown during battery operation. Grain engineering in polycrystalline materials provides a large playground to modulate the materials properties beyond controlling the chemical composition, and electronic and crystal structures. In particular, the anisotropic ion-conducting pathways in layered oxides make the grain crystallographic orientation a critical factor in determining the modality of the redox reactions in these materials.<br/><br/>This presentation will discuss our recent progress in the design, synthesis, and characterization of cathode microstructures in lithium batteries.<br/><br/>First, we will discuss how the charge distribution is guided by grain crystallographic orientations in polycrystalline battery materials. We elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium-ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.<br/><br/>Second, we will discuss how the grain arrangement affects the thermal stability of polycrystalline cathode materials in rechargeable batteries. We performed a systematic in situ study on the Ni-rich polycrystalline cathode materials to investigate the fundamental degradation mechanism of charged cathodes at elevated temperatures, which is essential for tailoring material properties and improving performance. Using multiple microscopy, scattering, thermal, and electrochemical probes, we decoupled the major contributors to the thermal instability from intertwined factors. Based on our findings, the cathode grain microstructure has a forgotten yet important role in the thermal stability of polycrystalline rechargeable batteries. Oxygen release, as an important process during the thermal runaway, can be regulated through engineering grain arrangements. The grain arrangement can modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered cathodes to offer more possibilities for cathode material design and synthesis.

Keywords

neutron scattering | spectroscopy | x-ray tomography

Symposium Organizers

Peng Bai, Washington University in St. Louis
Donal Finegan, National Renewable Energy Laboratory
Hui Xiong, Boise State University
Yuan Yang, Columbia University

Symposium Support

Silver
Carl Zeiss Microscopy

Publishing Alliance

MRS publishes with Springer Nature