MRS Meetings and Events

 

EN03.07.07 2022 MRS Fall Meeting

Sodium and Potassium Superconcentrated Aqueous Electrolytes for 2 V-Class Aqueous Batteries

When and Where

Nov 30, 2022
11:15am - 11:30am

Hynes, Level 3, Ballroom C

Presenter

Co-Author(s)

Tomooki Hosaka1,Ayumi Noda1,Kento Chiguchi1,Rie Takahashi1,Kei Kubota1,Shinichi Komaba1

Tokyo University of Science1

Abstract

Tomooki Hosaka1,Ayumi Noda1,Kento Chiguchi1,Rie Takahashi1,Kei Kubota1,Shinichi Komaba1

Tokyo University of Science1
Recently, superconcentrated aqueous electrolytes have attracted significant attention because of their wide potential window compared with conventional aqueous solutions. According to the literature, 21 mol kg<sup>-1</sup> LiN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> (LiTFSA)/H<sub>2</sub>O and 27.8 mol kg<sup>-1</sup> Li(TFSA)<sub>0.7</sub>[N(SO<sub>2</sub>C<sub>2</sub>F<sub>5</sub>)<sub>2</sub> (BETA)]<sub>0.3</sub>/H<sub>2</sub>O electrolytes show potential window of ~2 V and ~3.5 V, respectively.<sup>1, 2</sup> As well as the Li electrolytes, superconcentrated aqueous Na and K electrolytes have been recently studied. In general, aqueous Na and K solutions show higher ionic conductivity than Li counterparts because of their weak Lewis acidity, i.e. weak interaction between the cations and solvents/anions, and consequent small Stokes radii of Na<sup>+</sup> and K<sup>+</sup> ions.<sup>3</sup> Moreover, these cations with weak Lewis acidity stabilize N(SO<sub>2</sub>F)<sub>2</sub><sup>−</sup> (FSA<sup>−</sup>) anion in highly concentrated aqueous solutions.<sup>4, 5</sup> In order to prepare superconcentrated solutions, both anionic mixing and cationic mixing are effective because larger entropy increase from the solid mixtures to the liquid mixtures at the eutectic mixture makes the liquid phase more stable.<br/>Based on the dual cation and dual anion strategy, we recently reported superconcentrated electrolytes of 33 mol kg<sup>−1</sup> Na<sub>0.45</sub>K<sub>0.55</sub>FSA/H<sub>2</sub>O <sup>6</sup> and 55 mol kg<sup>−1</sup> K(FSA)<sub>0.6</sub>(OTf)<sub>0.4</sub>/H<sub>2</sub>O electrolytes, <sup>7</sup> showing the wide potential windows of close to 3 V. In this presentation, we present electrochemical performance and charge-discharge mechanism of aqueous Na- and K-ion batteries using the superconcentrated solutions.<br/>Using the Na<sub>0.45</sub>K<sub>0.55</sub>FSA electrolyte, we designed Na/K dual-ion batteries with K<sub>2</sub>Mn[Fe(CN)<sub>6</sub>] (KMnHCF) positive electrode material and the NASICON-type polyanionic compounds, NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NTP) or Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP), as negative electrode materials. The NTP||K<sub>2</sub>Mn[Fe(CN)<sub>6</sub>] cell shows reversible charge-discharge curves with mainly two discharge voltage plateaus located at 1.7 V and 1.3 V and excellent capacity retention. Furthermore, the NVP||K<sub>2</sub>Mn[Fe(CN)<sub>6</sub>] cell demonstrated a 2 V-class operation.<br/>In the 55 mol kg<sup>−1</sup> K(FSA)<sub>0.6</sub>(OTf)<sub>0.4</sub> electrolyte, we evaluated K<sub>2</sub>Mn<sub>0.5</sub>Fe<sub>0.5</sub>[Fe(CN)<sub>6</sub>] (KMnFeHCF) positive and PTCDI negative electrodes, which have been utilized for aqueous K-ion batteries using with 22 mol kg<sup>-1</sup> KOTf electrolyte.<sup>8</sup> Both positive and negative electrodes achieved highly reversible charge-discharge for 200 cycles. The cycle performances were much better than either 31 mol kg<sup>−1</sup> KFSA or 20 mol kg<sup>−1</sup> KOTf electrolytes. Similar to the half cell, the full cell of PTCDI |55 mol kg<sup>−1</sup> K(FSA)<sub>0.6</sub>(OTf)<sub>0.4</sub>| K<sub>2</sub>Fe<sub>0.5</sub>Mn<sub>0.5</sub>[Fe(CN)<sub>6</sub>] delivered highly reversible charge-discharge curves for 200 cycles, achieving capacity retention of 96 %.<br/>We will discuss the impact of mixed anions and cations on the electrode reaction, including mobile ionic species and the surface layer of the electrode in the presentation.<br/><br/><b>References</b>:<br/>1. L. Suo, K. Xu <i>et al.</i>, <i>Science</i>, 2015, <b>350</b>, 938-943.<br/>2. Y. Yamada, A. Yamada <i>et al.</i>, <i>Nat. Energy</i>, 2016, <b>1</b>, 16129.<br/>3. T. Hosaka, S. Komaba <i>et al.</i>, <i>Chem. Rev.</i>, 2020, <b>120</b>, 6358–6466.<br/>4. D. Reber, C. Battaglia <i>et al.</i>, <i>Electrochim. Acta</i>, 2019, <b>321</b>, 134644.<br/>5. S. Ko, Y. Yamada and A. Yamada, <i>Electrochem. Commun.</i>, 2020, <b>116</b>, 106764.<br/>6. T. Hosaka, S. Komaba <i>et al.</i>, <i>ACS Appl. Mater. Interfaces</i>, 2022,14, 20, 23507.<br/>7. R. Takahashi, T. Hosaka, S. Komaba, <i>ECSJ Spring Meet</i>., 2020, 3I19.<br/>8. L. Jiang, Y.-S. Hu <i>et al.</i>, <i>Nat. Energy</i>, 2019, 4, 495.

Keywords

Na | water

Symposium Organizers

Haegyeom Kim, Lawrence Berkeley National Laboratory
Raphaële Clement, University of California
Shyue Ping Ong, University of California, San Diego
Yan Eric Wang, Samsung Research America

Symposium Support

Silver
Nissan North America, Inc.
SK on Co., Ltd.
Umicore

Bronze
Materials Horizons
MilliporeSigma

Publishing Alliance

MRS publishes with Springer Nature