MRS Meetings and Events

 

EN07.06.03 2022 MRS Fall Meeting

Structural Resolution and Mechanistic Insight into Hydrogen Adsorption in Flexible ZIF-7

When and Where

Nov 30, 2022
11:15am - 11:45am

Hynes, Level 3, Room 302

Presenter

Co-Author(s)

Mike McGuirk1

Colorado School of Mines1

Abstract

Mike McGuirk1

Colorado School of Mines1
Flexible metal–organic frameworks offer a route towards high useable hydrogen storage capacities with minimal swings in pressure and temperature <i>via</i> step-shaped adsorption and desorption profiles. Yet, the understanding of hydrogen-induced flexibility in candidate storage materials remains incomplete. Here, we investigate the hydrogen storage properties of a quintessential flexible metal–organic framework, ZIF-7. We use high-pressure isothermal hydrogen adsorption measurements to identify the pressure–temperature conditions of the hydrogen-induced structural transition in ZIF-7. The material displays narrow hysteresis and has a shallow adsorption slope between 100 K and 125 K. To gain mechanistic insight into the cause of the phase transition correlating with stepped adsorption and desorption, we conduct powder neutron diffraction measurements of the D<sub>2</sub> gas-dosed structures at conditions across the phase change. Rietveld refinements of the powder neutron diffraction patterns yield the structures of activated ZIF-7 and of the gas-dosed material in the dense and open phases. The structure of the activated phase of ZIF-7 is corroborated by the structure of the activated phase of the Cd congener, CdIF-13, which we report here for the first time based on single crystal X-ray diffraction measurements. Subsequent Rietveld refinements of the powder patterns for the gas-dosed structure reveal that the primary D<sub>2</sub> adsorption sites in the dense phase form D<sub>2</sub>–arene interactions between adjacent ligands in a sandwich-like adsorption motif. These sites are prevalent in both the dense and the open structure for ZIF-7, and we hypothesize that they play an important role in templating the structure of the open phase. We discuss the implications of our findings for future approaches to rationally tune step-shaped adsorption in ZIF-7, its congeners, and flexible porous adsorbents in general. Lastly, important to the application of flexible frameworks, we show that pelletization of ZIF-7 produces minimal variation in performance.

Keywords

neutron scattering

Symposium Organizers

Alexander Headley, Sandia National Laboratories
Mitch Ewan, University of Hawai'i
Thomas Gennett, National Renewable Energy Laboratory/Colorado School of Mines
Samantha Johnson, Pacific Northwest National Laboratory

Publishing Alliance

MRS publishes with Springer Nature