MRS Meetings and Events

 

EQ06.12.05 2022 MRS Fall Meeting

Room Temperature Multiferroicity in Transition Metal Dichalcogenide Bulk Single Crystals

When and Where

Dec 6, 2022
9:30am - 9:45am

EQ06-virtual

Presenter

Co-Author(s)

Gabriel Cardenas-Chirivi1,2,Karen Vega-Bustos2,Jhon Pazos1,Mario Macias Lopez2,Oscar Herrera1,Camilo Espejo3,William López-Pérez3,Jose Augusto Galvis1,Paula Giraldo-Gallo2

Universidad Central1,Universidad de los Andes2,Universidad del Norte3

Abstract

Gabriel Cardenas-Chirivi1,2,Karen Vega-Bustos2,Jhon Pazos1,Mario Macias Lopez2,Oscar Herrera1,Camilo Espejo3,William López-Pérez3,Jose Augusto Galvis1,Paula Giraldo-Gallo2

Universidad Central1,Universidad de los Andes2,Universidad del Norte3
The search for new and better multiferroicity is arduous. Ferroic orders such as ferroelectricity and ferromagnetism must coexist simultaneously <sup>1</sup>. Nonetheless, ferroelectrics tend to be insulators as a need to preserve electric polarization (free charges in metals screen this effect) while ferromagnets are metals in their majority <sup>2</sup>. Coupling among the multiple degrees of freedom allows that the order parameters of one state can be controlled by tuning parameters different from their conjugate variable. Historically, it has been found mainly in 3-dimensional complex oxides and perovskites, such as Cr2O<sub>3</sub> <sup>3</sup>, YMnO<sub>3</sub> <sup>4</sup>, BiFeO<sub>3</sub> <sup>5</sup>, among others, or in heterostructures of ferroelectric/ferromagnetic thin-films <sup>6</sup>. Recent advancements in the field of 2D-multiferroics have been done, as for example in the halide compound NiI<sub>2</sub> and Fe-doped In<sub>2</sub>Se<sub>3</sub> <sup>7,8</sup>. However, this state has still been elusive for the most widely studied and characterized family of 2D compounds, the transition metal dichalcogenides (TMDs), in spite of theoretical predictions in this respect <sup>9,10</sup>. In this study, we report the first experimental realization of multiferroic states in TMDs via doping, at room temperature, in bulk single crystals. We observe a coexistence of ferromagnetism and ferroelectricity, revealed in the observation of magnetic hysteresis loops and piezoresponse force microscopy (PFM) measurements, resistive switching effects, Density functional theory (DFT) calculations, and substantial piezoelectricity with similar effective coefficients than its undoped monolayer counterparts<sup> 11</sup>. This work opens the possibility of building devices for new nanoelectronic and spintronic applications.<br/><br/><b>References</b><br/><br/>1. Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Multiferroics: Past, present, and future. Phys. Today 63, 38–43 (2010).<br/>2. Hill, N. A. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).<br/>3. Astrov, D. N. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP 11, 708–709 (1960).<br/>4. Hanamura, E. & Tanabe, Y. Phase transitions and second-harmonics of ferroelectric and antiferromagnetic RMnO<sub>3</sub>. Phase Transitions 79, 957–971 (2006).<br/>5. Kadomtseva, A. M. et al. Phase transitions in multiferroic BiFeO<sub>3</sub> crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transitions 79, 1019–1042 (2006).<br/>6. Ueda, K., Tabata, H. & Kawai, T. Coexistence of ferroelectricity and ferromagnetism in BiFeO<sub>3</sub>–BaTiO<sub>3</sub> thin films at room temperature. Appl. Phys. Lett. 75, 555–557 (1999).<br/>7. Behera, B., Sutar, B. C. & Pradhan, N. R. Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Materials 4, 847–863 (2021).<br/>8. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).<br/>9. Tu, Z. & Wu, M. 2D diluted multiferroic semiconductors upon intercalation. Adv. Electron. Mater. 5, 1800960 (2019).<br/>10. Zhong, T., Li, X., Wu, M. & Liu, J.-M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Natl Sci Rev 7, 373–380 (2020).<br/>11. Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

Keywords

van der Waals

Symposium Organizers

Xu Zhang, Carnegie Mellon University
Monica Allen, University of California, San Diego
Ming-Yang Li, TSMC
Doron Naveh, Bar-Ilan Univ

Publishing Alliance

MRS publishes with Springer Nature