MRS Meetings and Events

 

SB05.04/SB08.04.03 2024 MRS Spring Meeting

Minimally Invasive Neuroelectronics

When and Where

Apr 23, 2024
4:30pm - 4:45pm

Room 434, Level 4, Summit

Presenter

Co-Author(s)

Anqi Zhang1

Stanford University1

Abstract

Anqi Zhang1

Stanford University1
Neuroelectronic interfaces have enabled significant advances in both fundamental neuroscience research and the treatment of neurological disorders. However, current neuroelectronic devices have a clear trade-off between invasiveness and spatial resolution, and are unable to achieve seamless integration into the nervous system with cell-type specificity. In this talk, I will first introduce an ultra-small and flexible endovascular neural probe that can be implanted into sub-100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. Second, I will describe a biochemically functionalized electronic probe that enables cell type- and neuron subtype-specific targeting and recording in the brain. Third, I will present a bottom-up approach for constructing neural interfaces from the cell surface, where neurons are genetically programmed to express membrane-localized enzymes that catalyze in situ assembly of functional materials. Finally, I will discuss future advances toward clinical translation of minimally invasive neuroelectronic interfaces capable of long-term monitoring and treatment of neurological disorders.

Keywords

biomaterial | polymer

Symposium Organizers

Eric Glowacki, Central European Institute of Technology
Philipp Gutruf, University of Arizona
John Ho, National University of Singapore
Flavia Vitale, University of Pennsylvania

Symposium Support

Bronze
Diener Electronic GmbH + Co. KG

Session Chairs

Philipp Gutruf
Huiliang Wang

In this Session

Publishing Alliance

MRS publishes with Springer Nature