MRS Meetings and Events

 

ES02.04.02 2024 MRS Spring Meeting

In Situ Magnetic Resonance Characterizations of Rechargeable Batteries

When and Where

Apr 25, 2024
8:30am - 9:00am

Room 424, Level 4, Summit

Presenter

Co-Author(s)

Yanyan Hu1

Florida State University1

Abstract

Yanyan Hu1

Florida State University1
Magnetic resonance techniques, including nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI), and electron magnetic resonance (EPR), are non-invasive techniques used to examine both surface chemistry and bulk properties. These techniques employ nuclear or electron spins as probes for interrogating structures and dynamics. We have employed these techniques in situ to understand the working and failing mechanisms of rechargeable batteries. Utilizing in situ <sup>7</sup>Li NMR, we determined the lithiation and delithiation sequence and rates at different structural sites in high-voltage transition metal oxide cathodes. Via <i>in situ</i> <sup>17</sup>O NMR, we evaluated the reactivity of various oxygen species in these high-voltage transition metal oxide cathodes and the reversibility of these O redox reactions. In conjunction with <i>in situ</i> EPR, we discovered the synergy of the hybridized O<sub>2p</sub> and TM<sub>3d</sub> orbitals to deliver additional capacities in Li transition metal oxide materials and the subsequent stabilization of the structures to ensure reversibility. Combined <i>in situ</i> NMR and EPR also prove beneficial to elucidating redox mechanisms in organic cathode materials. Our recent work has demonstrated the efficacy of <i>in situ</i> 7Li MRI to identify new dendrite formation mechanisms in solid-state batteries and new phenomena in the dendrite formation process. <i>In situ</i> tracer-exchange NMR is useful to map out ion transport pathways in complex ion conductors and distinguish dendrite formation mechanisms at different states of charge. In summary, <i>in situ</i> magnetic resonance techniques are useful for uncovering structural and dynamic aspects of energy materials with spatial and temporal resolution.

Keywords

nuclear magnetic resonance (NMR)

Symposium Organizers

Raphaële Clement, University of California, Santa Barbara
Feng Lin, Virginia Tech
Yijin Liu, The University of Texas at Austin
Andrej Singer, Cornell University

Publishing Alliance

MRS publishes with Springer Nature