MRS Meetings and Events

 

NM03.09.09 2023 MRS Spring Meeting

Effect of Material and Shape of Nanoparticles on Hot Carrier Generation

When and Where

Apr 12, 2023
5:00pm - 7:00pm

Moscone West, Level 1, Exhibit Hall

Presenter

Co-Author(s)

Ly Thi Minh Huynh1,Seokheon Kim1,Sangwoon Yoon1

Chung-Ang University1

Abstract

Ly Thi Minh Huynh1,Seokheon Kim1,Sangwoon Yoon1

Chung-Ang University1
Nonradiative decay of photoexcited plasmons generates energetic nonthermal charge carriers. These hot charge carriers play a major role in plasmonic photocatalysis and photovoltaics. Therefore, establishing the relationship between the hot carrier generation efficiency and the structural and chemical parameters of nanoparticles is crucial for developing highly efficient plasmonic catalysts and photovoltaic materials. In this study, we compare the quantum efficiency of hot carrier generation between gold (AuNPs) and silver nanoparticles (AgNPs), and spherical (AuNSs) and cubic gold nanoparticles (AuNCs). We construct nanoparticle-on-mirror (NPoM) systems where reactant molecules are positioned in the nanogaps between the nanoparticles and gold films. Excitation of the NPoM at 785 nm, followed by the detection of products using surface-enhanced Raman spectroscopy allows us to measure the plasmon-driven reaction yields. Dividing the reaction yield by the calculated absorption cross section at the excitation laser wavelength provides the efficiency of hot carrier generation per absorbed photon. We reveal that AgNPs are more effective at generating hot carriers than AuNPs, which is consistent with the higher electron-surface scattering rate of AgNPs. The hot carrier generation of AuNCs is marginally better than that of AuNSs, which can be attributed to the enhanced electric fields inside the AuNCs in the nanogap region. This study contributes to a rational design of plasmonic catalysts or photovoltaic materials of higher efficiencies.

Keywords

electron-phonon interactions

Symposium Organizers

Lilac Amirav, Technion Israel Institute of Technology
Klaus Boldt, University of Rostock
Matthew Sheldon, Texas A&M University
Maria Wächtler, Technische Universität Kaiserslautern

Symposium Support

Silver
QD-SOL

Bronze
Magnitude Instruments
Ultrafast Systems LLC

Session Chairs

Lilac Amirav
Klaus Boldt
Matthew Sheldon
Maria Wächtler

In this Session

NM03.09.01
Graphitic Carbon Nitride Films with Biomimetic Structure for Photocatalytic Conversion of Carbon Dioxide

NM03.09.02
Z-Schematic Artificial Leaf-like Structure for Biosolar Oxyfunctionalization of C-H Bonds

NM03.09.03
Photocatalytic Gold Deposition on Titanium Dioxide Templates Mimicking Axonal Growth

NM03.09.05
Photocatalytic Degradation of Perfluoroalkyl Substances in Water by Using a Duo-Functional Tri-Metallic-Oxide Hybrid Catalyst

NM03.09.06
Heterostructured Photocatalysts of Ni2+ Doped CdS Quantum Dots and β-Pb0.33V2O5 Nanowires: Towards Selective CO2 Reduction

NM03.09.07
Perovskite-Type Oxynitride Nanofibers Performing Photocatalytic Oxygen and Hydrogen Generation

NM03.09.08
Surface Structural Change Investigations of Modified Fe3O4 Nanoparticles Concerning Efficient Reusability and Enhanced Photocatalytic Activity

NM03.09.09
Effect of Material and Shape of Nanoparticles on Hot Carrier Generation

NM03.09.10
Plasmon-Assisted Photocatalytic Conversion of Carbon Dioxide – A Demonstration by Two Case Studies

NM03.09.11
Real Structure and Thermal Stability of Ag and Ag@X Core-shell Nanoparticles Prepared by Gas Aggregation Cluster Sources

View More »

Publishing Alliance

MRS publishes with Springer Nature