MRS Meetings and Events

 

EN01.06.19 2023 MRS Fall Meeting

Highly Efficient, Flexible and Self-Healable Moisture-Driven Energy Harvester based on 2D Vanadium Pentoxide Nanosheets

When and Where

Nov 28, 2023
8:00pm - 10:00pm

Hynes, Level 1, Hall A

Presenter

Co-Author(s)

Kundan Saha1,Sameer Sonkusale1

Tufts University1

Abstract

Kundan Saha1,Sameer Sonkusale1

Tufts University1
The ubiquitous source of atmospheric moisture brought about a fascinating research avenue of extracting atmospheric water to generate sustainable electricity. Energy may be extracted from ambient moisture with obvious and substantial advantages. This point-of-use technology provides a decentralized alternative to meet the energy needs in isolated off-grid places. Unlike traditional energy generators which predominantly rely upon fossil fuel, moisture-induced energy generators can extract energy from moisture in a sustainable and eco-friendly way. Herein, we demonstrated a self-healable moist electric generator (MEG) based on vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) 2D nanosheet membranes. Lamellar membranes of V<sub>2</sub>O<sub>5</sub> nanosheets have been shown to be excellent cation conductors and excellent materials for harvesting energy from ambient moisture. Ultra-thin 2D nanosheets of V<sub>2</sub>O<sub>5 </sub>was obtained by treatment of bulk V<sub>2</sub>O<sub>5 </sub>crystals with hydrogen peroxide. V<sub>2</sub>O<sub>5</sub> nanosheet membrane was fabricated by vacuum-assisted filtration of 2D V<sub>2</sub>O<sub>5</sub> nanosheets dispersion over a PTFE support membrane. The V<sub>2</sub>O<sub>5</sub> membrane was easily peeled off from the support membrane on drying to obtain a flexible and freestanding V<sub>2</sub>O<sub>5 </sub>membrane. The V<sub>2</sub>O<sub>5</sub> membrane consisting of percolated nanofluidic channels was sandwiched between a bottom solid copper foil and a perforated copper foil as the bottom electrode. The top electrode is perforated for exposure to atmospheric humidity. As the atmospheric water molecules come in contact with the V<sub>2</sub>O<sub>5</sub> surface, an open-circuit voltage of 0.5 Volts and a short-circuit current of 0.3 microamperes is generated. The generated voltage and current is attributed to the preferential flow of cations through the V<sub>2</sub>O<sub>5 </sub>nanochannels. The exposed surface and edges of V<sub>2</sub>O<sub>5</sub> nanosheets have a high negative surface charge which results in the splitting of water molecules into H<sub>3</sub>O<sup>+</sup> and OH<sup>-</sup> ions. An electrical double layer (EDL) is established at the V<sub>2</sub>O<sub>5</sub>/water interface which selectively permits H<sub>3</sub>O<sup>+</sup> ions through the channels. The mobile ions of the EDL transport through the nanofluidic channels creating a gradient between the two electrodes, resulting in a constant potential difference between the top and bottom electrodes which is harvested as electric current. The MEGs can be easily connected in parallel or series to enhance the current and voltage respectively. We demonstrate ten MEGs connected in series to power small electronic devices such as calculators and humidity meters. One of the key features of the V<sub>2</sub>O<sub>5</sub> MEG is its ability to repair any physical damage to the active material owing to the water-assisted healing characteristics V<sub>2</sub>O<sub>5</sub> membrane.

Keywords

atomic layer deposition | V

Symposium Organizers

Trisha Andrew, University of Massachusetts Amherst
Hye Ryung Byon, Korea Advanced Institute of Science and Technology
Thierry Djenizian, Ecole des Mines Saint-Etienne
Mihai Duduta, University of Connecticut

Session Chairs

Trisha Andrew
Mihai Duduta

In this Session

EN01.06.01
Flexible and Fast Chargeable Lithium-Ion Battery Based on Percolative Network-Based Electrospun Nickel Microfibers and Electrosprayed Nanotextured Anode Materials

EN01.06.02
The Power of Stress—A DFT Approach to Mitigate Fuel Cells Poisoning

EN01.06.05
Surface Facet Controlled Zinc Metal Anode for High Performance Aqueous Zinc Ion Energy Storage System

EN01.06.06
High Performance Lithium-Sulfur Batteries by Ultrathin Mixed Ionically-Electrically Conductive Interlayer via Solution Shearing

EN01.06.07
A Promising Approach Towards the Commercialization of Lithium Sulfur Batteries: Prelithiated Graphene

EN01.06.08
A New Strategy for Hexagonal Boron Nitride Coating on Zinc Metal Anode for High-Performance Zinc Ion Batteries

EN01.06.09
High Performance Metal Halide Batteries Enabled by Electrolyte Optimization

EN01.06.10
An Asymmetric Moisturizing 3D Foam with High Deformability for Complementary Energy Harvesting via Moisture-Induced Electric and Triboelectric Generator

EN01.06.11
High Voltage Generated by Moving Drops

EN01.06.12
Ultra-Flexible Li-Ion Batteries using High Mass-Loading Polymer-Rich Thick Electrodes

View More »

Publishing Alliance

MRS publishes with Springer Nature