MRS Meetings and Events

 

SB05.06.08 2023 MRS Fall Meeting

Organic Electrochemical Transistors as On-Site Signal Amplifiers for Electrochemical Aptamer-Based Sensing

When and Where

Nov 28, 2023
4:30pm - 4:45pm

Hynes, Level 1, Room 102

Presenter

Co-Author(s)

Xudong Ji1,Jonathan Rivnay1

Northwestern University1

Abstract

Xudong Ji1,Jonathan Rivnay1

Northwestern University1
Electrochemical aptamer-based sensors are typically deployed as individual, passive, surface-functionalized electrodes, but they exhibit limited sensitivity especially when the area of the electrode is reduced for miniaturization purposes. We demonstrate that organic electrochemical transistors (electrolyte gated transistors with volumetric gating) can serve as on-site amplifiers to improve the sensitivity of electrochemical aptamer-based sensors. By monolithically integrating an Au working/sensing electrode, on-chip Ag/AgCl reference electrode, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) counter electrode — also serving as the channel of an organic electrochemical transistor, we can simultaneously perform testing of organic electrochemical transistors and traditional electroanalytical measurement on electrochemical aptamer-based sensors including cyclic voltammetry and square-wave voltammetry. This device can directly amplify the current from the electrochemical aptamer-based sensor via the in-plane current modulation in the counter electrode/transistor channel. The integrated sensor can sense transforming growth factor beta 1 with 3 to 4 orders of magnitude enhancement in sensitivity compared to that in an electrochemical aptamer-based sensor (292 μA/dec vs. 85 nA/dec). This approach is believed to be universal, and can be applied to a wide range of tethered electrochemical reporter-based sensors to enhance sensitivity, aiding in sensor miniaturization and easing the burden on backend signal processing.

Symposium Organizers

Herdeline Ann Ardoña, University of California, Irvine
Guglielmo Lanzani, Italian Inst of Technology
Eleni Stavrinidou, Linköping University
Flavia Vitale, University of Pennsylvania

Symposium Support

Bronze
iScience | Cell Press

Publishing Alliance

MRS publishes with Springer Nature