MRS Meetings and Events

 

SF02.10.05 2023 MRS Fall Meeting

Bits to Atoms and Atoms to Bits: Atomic Fabrication in Electron Microscopy

When and Where

Nov 30, 2023
3:15pm - 3:45pm

Sheraton, Second Floor, Republic A

Presenter

Co-Author(s)

Rama Vasudevan4,Sergei Kalinin1,Marc Bellemare2,Aaron Courville2,Jesse Farebrother2,3,Max Schwarzer2,Pablo Castro3,Joshua Greaves3,Maxim Ziatdinov4,Ayana Ghosh4,Igor Mordatch3,Kevin Roccapriore4

University of Tennessee, Knoxville1,MILA2,Google Deep Mind3,Oak Ridge National Laboratory4

Abstract

Rama Vasudevan4,Sergei Kalinin1,Marc Bellemare2,Aaron Courville2,Jesse Farebrother2,3,Max Schwarzer2,Pablo Castro3,Joshua Greaves3,Maxim Ziatdinov4,Ayana Ghosh4,Igor Mordatch3,Kevin Roccapriore4

University of Tennessee, Knoxville1,MILA2,Google Deep Mind3,Oak Ridge National Laboratory4
The last note left by Richard Feynman stated “<i>What I cannot create, I do not understand</i>.” Building solid state quantum computers, creating nanorobots, and designing new classes of biological molecules and catalysts alike requires the capability to manipulate and assemble matter atom by atom, probe the resulting structures, and connecting them to macroscopic world. Until now, the only viable approach for atomic fabrication was the Scanning Tunneling Microscopy, often integrated with the bespoke surface science techniques. Over the last decade, it has been shown that electron beams in Scanning Transmission Electron Microscopy can be used not only to probe structure and electronic properties of materials on atomic level, but also to modify materials on the atomic level. Harnessing electron beam changes for direct atomic fabrication however requires synergy between machine learning methods and microscope control. In this presentation, I will illustrate the progression of automated electron microscopy from real-time data analysis to physics discovery to atomic manipulations. Here, the applications of classical deep learning methods in streaming image analysis are strongly affected by the out of distribution drift effects, and the approaches to minimize though are discussed. The robust approach for real-time analysis of the scanning transmission electron microscopy (STEM) data streams, based on the ensemble learning and iterative training (ELIT) of deep convolutional neural networks, is implemented on an operational microscope, enabling the exploration of the dynamics of specific atomic configurations under electron beam irradiation via an automated experiment in STEM. Combined with beam control, this approach allows studying beam effects on selected atomic groups and chemical bonds in a fully automated mode. We demonstrate atomically precise engineering of single vacancy lines in transition metal dichalcogenides and the creation and identification of topological defects in graphene. The ELIT-based approach opens the pathway toward the direct on-the-fly analysis of the STEM data and engendering real-time feedback schemes for probing electron beam chemistry, atomic manipulation, and atom by atom assembly. We further illustrate how deep kernel learning (DKL) methods allow to realize both the exploration of complex systems towards the discovery of structure-property relationship, and enable automated experiment targeting physics (rather than simple spatial feature) discovery. The latter is illustrated via experimental discovery of the edge plasmons in STEM/EELS. Finally, we demonstarte the use of the reinforcement learnign for real-time control of atomic motion. Jointly, these developments open the pathway for creation and characterization of designed defect configurations and artificial molecules in 2D materials.

Keywords

additive manufacturing

Symposium Organizers

Olaf Borkiewicz, Argonne National Laboratory
Jingshan Du, Pacific Northwest National Laboratory
S. Eileen Seo, Arizona State University
Shuai Zhang, University of Washington

Symposium Support

Bronze
Center for the Science of Synthesis Across Scales
Molecular Engineering & Sciences Institute

Publishing Alliance

MRS publishes with Springer Nature