MRS Meetings and Events

 

SB07.02.04 2023 MRS Fall Meeting

In Vivo Bioengineering of Conductive Microfibers: From In Vivo Biosynthesis to Advanced Characterization

When and Where

Nov 27, 2023
2:30pm - 2:45pm

Hynes, Level 1, Room 110

Presenter

Co-Author(s)

Claudia Tortiglione1,Marika Iencharelli1,Giuseppina Tommasini2,Valentina Di Meo1,Gennaro Sanità1,Alessio Crescitelli1,Emanuela Esposito1,Maria Antonietta Ferrara1,Giuseppe Coppola1,Francesca Di Maria3,Mattia Zangoli3,Maria Moros2,Angela Tino1

Istituto di Scienze Applicate e Sistemi Intelligenti, CNR1,Instituto de Nanociencia y Materiales de Aragón (INMA)2,Istituto per la Sintesi Organica e Fotoreattività, CNR3

Abstract

Claudia Tortiglione1,Marika Iencharelli1,Giuseppina Tommasini2,Valentina Di Meo1,Gennaro Sanità1,Alessio Crescitelli1,Emanuela Esposito1,Maria Antonietta Ferrara1,Giuseppe Coppola1,Francesca Di Maria3,Mattia Zangoli3,Maria Moros2,Angela Tino1

Istituto di Scienze Applicate e Sistemi Intelligenti, CNR1,Instituto de Nanociencia y Materiales de Aragón (INMA)2,Istituto per la Sintesi Organica e Fotoreattività, CNR3
The unmatchable capability of living cells to fabricate complex structure starting from simple building blocks offers new paradigms to seamlessly integrate new electronic structures into the living matter, creating new hybrid devices. We have previously shown the capability of the living tissue-like organism, the freshwater polyp <i>Hydra</i> <i>vulgaris</i>, to produce fluorescent and conductive interface embedded into the animal tissues, starting from thiophene-based compounds, demonstrating the feasibility to use these organisms as biofactories of novel biocompatible and conformable bioelectronic interfaces [1-2]. Here we show that the potential of biofiber production is broadly valid in other biological systems, and showed that it can be promoted by different human and murine cell lines and by other invertebrate <i>in vivo</i> models (such as the sea anemone <i>Nematostella vectensis</i>). The cell type influences the fiber shape, amount and optical properties. In order to understand the mechanism underlaying the fiber biogenesis, on one side we performed a systematic chemical engineering approach to identify the structure/groups involved in the spontaneous fiber assembling. On the other, we performed several physical and chemical treatments to identify the cell machinery components involved in the biosynthetic process. Finally, by mean of advanced characterization methods (ultrastructural, spectroscopical and imaging techniques) we shed light on the mechanism of biofiber production and the fine structure, paving the way to new bioengineering concepts to fabricate novel living conductive materials.<br/><br/><br/><br/><br/><br/>[1] G. Tommasini, G. Dufil, F. Fardella, X. Strakosas, E. Fergola, T. Abrahamsson, D. Bliman, R. Olsson, M. Berggren, A. Tino, E. Stavrinidou, C. Tortiglione, Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers, Bioactive Materials 10 (2022) 107-116.<br/>[2] M. Moros, F. Di Maria, P. Dardano, G. Tommasini, H. Castillo-Michel, A. Kovtun, M. Zangoli, M. Blasio, L. De Stefano, A. Tino, G. Barbarella, C. Tortiglione, In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers, iScience 23(4) (2020) 101022.

Symposium Organizers

Maria Asplund, Chalmers University of Technolog
Alexandra Paterson, University of Kentucky
Achilleas Savva, Delft University of Technology
Georgios Spyropoulos, University of Ghent

Symposium Support

Bronze
Science Robotics | AAAS

Publishing Alliance

MRS publishes with Springer Nature