MRS Meetings and Events

 

SB05.08.13 2022 MRS Fall Meeting

Large-Area 2D Colloidal Microchannel Formation Under Non-Equilibrium Condition

When and Where

Nov 29, 2022
8:00pm - 10:00pm

Hynes, Level 1, Hall A

Presenter

Co-Author(s)

Ryan Dumont1,Deepika Kakarla1,Ashish Aphale1,Bo Li1

Kennesaw State University1

Abstract

Ryan Dumont1,Deepika Kakarla1,Ashish Aphale1,Bo Li1

Kennesaw State University1
To face formidable challenges of future electronics with complex functionality and architecture, not only new materials but also new fabrication method need to be developed. However, topographical micropatterns (such as microchannels) are conventionally fabricated by complicated lithographic method, which are usually expensive and time-consuming, and not suitable for high throughput manufacture. Therefore, a low-cost, large-scale method for topographical template preparation needs to be developed. Recently, cracks formed in drying colloidal film have been demonstrated as ideal materials for microscale manufacturing. In this work, we first studied the key parameters that affect the dimensions of colloidal microchannel, such as channel-to-channel distance, channel width, and theoretical model is proposed to provide insights on colloidal microchannel formation. Then, the criteria for 2D microchannel formation (i.e., microchannel formed in both x and y direction) are investigated. The dimensions of 2D microchannel will be tuned by varying non-equilibrium condition, such as convective flux, temperature and evaporation rate. This work will provide a general strategy for generating of 2D microchannels, thereby offering a low-cost, large-area and lithography-free method for fabrication of patterns for printed electronics.

Keywords

ink-jet printing | self-assembly

Symposium Organizers

Julia Dshemuchadse, Cornell University
Chrisy Xiyu Du, Harvard University
Lucio Isa, ETH Zurich
Nicolas Vogel, University Erlangen-Nürnberg

Symposium Support

Bronze
ACS Omega

Session Chairs

Julia Dshemuchadse
Chrisy Xiyu Du

In this Session

SB05.08.01
Novel Structures Found in Nanocrystal Self-Assemblies and the Thorough Characterization of the Superstructures and the Orientation of the Crystal Domains

SB05.08.02
Simulating Pressure-Driven Solid–Solid Phase Transformations Across Crystal Structure Types

SB05.08.03
Up-Conversion of Coherent Light Emission Inside of Polar Nematic Liquid Crystalline Media

SB05.08.04
Predictive Design of Orientational Order in Confined Active Nematic Materials

SB05.08.05
Development of a Mesoscale Framework to Model Degradation of Polyolefins Under Temperature Gradients

SB05.08.06
Fabrication of Hierarchically Converging Polymer Nanofibers via Liquid Crystal-Templated Chemical Vapor Polymerization and Their Growth Mechanisms

SB05.08.07
Clathrate-Water Interface Control by 2D Janus Amphiphilic Peptide Nanosheets for Ice Recrystallization Inhibition

SB05.08.08
Ice-Water Microcurvature Controllable MOF Cryopreservative with Lattice Matching of Hydrogen Bond Interactions

SB05.08.10
Experimentally Informed Structure Optimization of Amorphous TiO2 Films Grown by Atomic Layer Deposition

SB05.08.11
Effect of Plate Inclination on the Liquid Transfer between Nonparallel Plates

View More »

Publishing Alliance

MRS publishes with Springer Nature