MRS Meetings and Events

 

DS03.11.02 2022 MRS Fall Meeting

Finding Thermally Robust Superhard Materials with Machine Learning

When and Where

Nov 30, 2022
3:45pm - 4:15pm

Hynes, Level 2, Room 206

Presenter

Co-Author(s)

Jakoah Brgoch1

University of Houston1

Abstract

Jakoah Brgoch1

University of Houston1
Superhard materials with a Vickers hardness >40 GPa are essential in applications ranging from manufacturing to energy production. Finding new superhard materials has traditionally been guided by empirical design rules derived from classically known materials. However, the ability to quantitatively predict hardness remains a significant barrier in materials design. To address this challenge, we constructed an ensemble machine-learning model capable of directly predicting load-dependent hardness. The predictive power of our model was validated on eight unmeasured metal disilicides and a hold-out set of superhard materials. The trained model was then used to screen compounds in Pearson’s Crystal Data (PCD) set and combined with our recently developed machine-learning phase diagram tool to suggest previously unreported superhard compounds. Finally, industrial materials often experience tremendous heat during application; thus, we are building a method for predicting hardness at elevated temperatures.

Keywords

hardness

Symposium Organizers

Arun Kumar Mannodi Kanakkithodi, Purdue University
Sijia Dong, Northeastern University
Noah Paulson, Argonne National Laboratory
Logan Ward, University of Chicago

Symposium Support

Silver
Energy Material Advances, a Science Partner Journal

Bronze
Chemical Science | Royal Society of Chemistry
Patterns, Cell Press

Publishing Alliance

MRS publishes with Springer Nature