MRS Meetings and Events

 

EN04.09.08 2022 MRS Fall Meeting

Highly Pure Single-Photon Emission from Single Perovskite QDs

When and Where

Dec 1, 2022
11:00am - 11:15am

Hynes, Level 3, Ballroom A

Presenter

Co-Author(s)

Gabriele Raino1,2,Chenglian Zhu1,2,Malwina Marczak1,2,Leon Feld1,2,Simon Böhme1,2,Caterina Bernasconi1,2,Anastasiia Moskalenko1,2,Ihor Cherniukh1,2,Dmitry Dirin1,2,Maryna Bodnarchuk1,2,Maksym Kovalenko1,2

ETH Zürich1,Empa–Swiss Federal Laboratories for Materials Science and Technology2

Abstract

Gabriele Raino1,2,Chenglian Zhu1,2,Malwina Marczak1,2,Leon Feld1,2,Simon Böhme1,2,Caterina Bernasconi1,2,Anastasiia Moskalenko1,2,Ihor Cherniukh1,2,Dmitry Dirin1,2,Maryna Bodnarchuk1,2,Maksym Kovalenko1,2

ETH Zürich1,Empa–Swiss Federal Laboratories for Materials Science and Technology2
Attaining pure single-photon emission is key for many quantum technologies,<sup>1</sup> from optical quantum computing<sup>2</sup> to quantum key distribution<sup>3</sup> and quantum imaging.<sup>4</sup> The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultra-high vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Lead-halide perovskite APbX<sub>3</sub> (A=Cs or organic cation; X=Cl, Br, I) quantum dots (QDs) are one of the desired materials, of particular interest due to their low-cost synthesis, solution processability, tunability of the emission wavelength via size and composition, narrow-band emission, short radiative lifetime (~ns at RT) as well as high photoluminescence quantum yield (QY).<sup>5,6</sup> Here, we present a systematic study across ∼ 170 photostable single CsPbX<sub>3 </sub>(X: Br and I) colloidal QDs of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g<sup>(2)</sup>(0) as low as 2%) from a cavity-free, non-resonantly excited single 6.6 nm CsPbI<sub>3</sub> QDs, showcasing the great potential of CsPbX<sub>3</sub> QDs as room-temperature highly pure single-photon sources for quantum technologies.<br/><br/><b>References</b><br/>1. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. <i>Nature Photonics</i> <b>10</b>, 631-641 (2016).<br/>2. Wang, H.<i> et al.</i> Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional hilbert space. <i>Phys. Rev. Lett.</i> <b>123</b>, 250503 (2019).<br/>3. Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. <i>Phys. Rev. Lett.</i> <b>85</b>, 1330 (2000).<br/>4. Tenne, R.<i> et al.</i> Super-resolution enhancement by quantum image scanning microscopy. <i>Nature Photonics</i> <b>13</b>, 116-122 (2019).<br/>5. Protesescu, L.<i> et al.</i> Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. <i>Nano Lett.</i> <b>15</b>, 3692-3696 (2015).<br/>6. Krieg, F.<i> et al.</i> Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. <i>ACS Cent. Sci.</i> <b>7</b>, 135-144 (2020).

Keywords

optical properties | perovskites | quantum dot

Symposium Organizers

Sascha Feldmann, Harvard University
Selina Olthof, University of Cologne
Shuxia Tao, Eindhoven University of Technology
Alexander Urban, LMU Munich

Symposium Support

Gold
LIGHT CONVERSION

Bronze
Software for Chemistry & Materials BV

Publishing Alliance

MRS publishes with Springer Nature