MRS Meetings and Events

 

EN07.07.03 2022 MRS Fall Meeting

Oxygen Evolution Reaction (OER) of Precious-Metal-Free Perovskite Nanocatalysts Made by Spray-Flame Synthesis—Effect of A- and B-Site Substitutions and B-Site Doping

When and Where

Nov 30, 2022
4:00pm - 4:15pm

Hynes, Level 3, Room 302

Presenter

Co-Author(s)

Steven Angel1,Adarsh Koul2,Wolfgang Schuhmann2,Christof Schulz1,Hartmut Wiggers1

University of Duisburg-Essen1,Ruhr-University Bochum2

Abstract

Steven Angel1,Adarsh Koul2,Wolfgang Schuhmann2,Christof Schulz1,Hartmut Wiggers1

University of Duisburg-Essen1,Ruhr-University Bochum2
The sustainable large-scale generation of hydrogen – <i>via</i> electrochemical water splitting – demands a large amount – and thus necessarily precious metal-free – active catalyst materials which allow the evolution of H<sub>2</sub> (HER) and O<sub>2</sub> (OER) at high rates while requiring low overpotentials.<sup>1</sup> Especially for the sluggish OER, cost-effective and abundant materials are sought as alternatives to RuO<sub>2</sub> and IrO<sub>2</sub> compounds which are scarce and poorly stable in alkaline electrolytes.<sup>2</sup> Perovskite-based materials (ABO<sub>3</sub>) incorporating lanthanides (A-site) and 3<i>d</i> transition metal ions (B-site) have been identified as such promising alternatives as their electronic structure and surface defects can be tuned by substituting/doping the A-and B-sites. The synthesis of such compounds is commonly done in time-consuming wet-chemical batch processes followed by a calcination step.<sup>3, 4</sup> Alternatively, the scalable spray-flame synthesis (SFS) allows the formation of functional high-surface-area doped/substituted perovskite nanoparticles in a single step.<sup>5, 6</sup><br/>Using the SFS method, we investigated the A-site (La<sub>1-<i>x</i></sub>Sr<i><sub>x</sub></i>CoO<sub>3</sub>, <i>x</i> = 0 – 0.4) and B-site (LaCo<sub>1-<i>y</i></sub>Fe<i><sub>y</sub></i>O<sub>3</sub>, <i>y</i> = 0 – 1) substitution, and the B-site doping (LaCo<sub>0.94</sub>M<sub>0.06</sub>O<sub>3</sub> (M = Cr, Mn, Fe, Ni, Cu) of the LaCoO<sub>3</sub> perovskite. XRD measurements indicated the formation of oxygen-deficient (e.g. LaCoO<sub>3-</sub><sub>d</sub>) trigonal R-3cR structures in the La<sub>1-<i>x</i></sub>Sr<i><sub>x</sub></i>CoO<sub>3</sub> series, a transition from the rhombohedrally- to the orthorhombically-distorted perovskite structure at <i>y</i> &gt; 0.4 in the LaCo<sub>1-<i>y</i></sub>Fe<i><sub>y</sub></i>O<sub>3</sub> series, and the same rhombohedral LaCoO<sub>3</sub> structure in all samples from the LaCo<sub>0.94</sub>M<sub>0.06</sub>O<sub>3</sub> series. Investigations using XPS measurements revealed a surface enrichment of La<sup>3+</sup> and Sr<sup>2+</sup> ions and the presence of Sr-oxides in the La<sub>1-<i>x</i></sub>Sr<i><sub>x</sub></i>CoO<sub>3</sub> series, an enrichment of La<sup>3+</sup> at <i>y</i> &gt; 0.4 and the presence of iron in the oxidation state +3 regardless of the concentration (<i>y</i>) in the LaCo<sub>1-<i>y</i></sub>Fe<i><sub>y</sub></i>O<sub>3</sub> series, and variable Co<sup>2+</sup>/Co<sup>3+</sup> ratios (e.g. <b>~</b>0.57 and <b>~</b>0.75 for the Cr- and Ni-doped samples, respectively) depending on the doping element in the LaCo<sub>0.94</sub>M<sub>0.06</sub>O<sub>3</sub> series. The nanoparticle products were further characterized using TEM/EDX, FTIR, and BET measurements. Selected samples were characterized <i>via</i> EXAFS, XANES, and XPS using synchrotron radiation.<br/>For the oxygen-evolution reaction (OER) catalytic performance, the lowest overpotentials – 325, 345, and 397 mV vs. RHE at 10 mA cm<sup>-2</sup> – were obtained using the La<sub>0.7</sub>Sr<sub>0.3</sub>CoO<sub>3</sub>, LaCo<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3</sub>, and LaCo<sub>0.94</sub>Ni<sub>0.06</sub>O<sub>3 </sub>samples, respectively. These results point to the relevance of increasing the B–O covalency<sup>7</sup> and the electrical conductivity<sup>8</sup> of the perovskite structures and are comparable to the performance of commercial IrO<sub>2</sub> reference<sup>9</sup> materials (1.59 V vs. RHE at 10 mA cm<sup>-2</sup>). Relationships between chemical composition, surface properties, and OER activity of the spray-flame synthesized catalysts will be discussed in detail.<br/><b>References</b><br/>1. <i>Electrochemical Science Advances </i><b>2022</b>, 00 e2100206.<br/>2. <i>Journal of Materials Chemistry A </i><b>2022,</b> 10, (5), 2271-2279.<br/>3. <i>Electrochimica Acta </i><b>2017,</b> 241, 433-439.<br/>4. <i>International Journal of Hydrogen Energy </i><b>2018,</b> 43, (9), 4682-4690.<br/>5. <i>Proceedings of the Combustion Institute </i><b>2019,</b> 37, (1), 83-108.<br/>6. <i>AIChE Journal </i><b>2019,</b> 66, (1), e16748.<br/>7. <i>ACS Applied Materials & Interfaces </i><b>2022,</b> 14, (12), 14129-14136.<br/>8. <i>Science and Technology of Advanced Materials </i><b>2015,</b> 16, (2), 026001.<br/>9. <i>ChemCatChem </i><b>2017,</b> 9, (15), 2988-2995.

Keywords

perovskites

Symposium Organizers

Alexander Headley, Sandia National Laboratories
Mitch Ewan, University of Hawai'i
Thomas Gennett, National Renewable Energy Laboratory/Colorado School of Mines
Samantha Johnson, Pacific Northwest National Laboratory

Publishing Alliance

MRS publishes with Springer Nature