2018 MRS Fall Meeting Home

Tutorial GI01—An Introduction to Machine Learning Methods for Materials Science

Sunday, November 25, 2018
10:15 AM - 5:00 PM
Hynes, Level 2, Room 205

Machine learning and data-driven techniques are quickly being adopted to accelerate materials research in a variety of ways. In this tutorial, we introduce materials scientists to a wide variety of machine learning topics, which have found utility in real-world materials research. We will review fundamental topics in machine learning, including supervised and unsupervised learning, reinforcement learning, and Bayesian techniques and optimization. We will also cover practical tools and techniques for handling experimental data, in addition to extracting the relevant information from such data to make the applications of machine learning methods possible. After the tutorial, participants will have a broad understanding of machine learning in general, as well as concrete example applications of the topics to materials science problems. No previous knowledge of machine learning will be required.

Take a look at this segment from MRS TV on this tutorial

8:30 am — CANCELLED
Data Fundamentals, Experimental Data and Computation
Alexander Hexemer

Filtering, statistical tools for experimental data, feature extraction and engineering.

9:45 am BREAK

10:15 am
Supervised Learning
Daniel V. Samarov

Regression and classification models and techniques including regularized least squares, support vector machines, neural networks, ensemble learning, gaussian processes.

1:30 pm
Unsupervised Learning
Aaron Gilad Kusne

Clustering, similarity measures, latent variable analysis, spectral unmixing, matrix factorization.

2:45 pm BREAK

3:15 pm
Sequential Experimental Design and Reinforcement Learning
Kristofer Reyes

Bayesian optimization and experimental design, belief models, decision policies, Markov decision processes.


  • Aaron Gilad Kusne, National Institute of Standards and Technology
  • Daniel V. Samarov, National Institute of Standards and Technology
  • Alexander Hexemer, Lawrence Berkeley National Laboratory
  • Kristofer Reyes, University at Buffalo, The State University of New York

Publishing Alliance

MRS publishes with Springer Nature


Corporate Partners