2024 MRS Fall Meeting & Exhibit

Symposium X—MRS/The Kavli Foundation Frontiers of Materials

Tuesday, December 3
12:15 pm – 1:15 pm
Sheraton, 2nd Floor, Grand Ballroom

Michelle Simmons
University of New South Wales

Engineering Qubits in Silicon with Atomic Precision

Abstract

The realisation of a large-scale error corrected quantum computer relies on our ability to reproducibly
manufacture qubits that are fast, highly coherent, controllable and stable. The promise of achieving
this in a highly manufacturable platform such as silicon requires a deep understanding of the materials
issues that impact device operation. In this talk, I will demonstrate our progress to engineer every
aspect of device behaviour in atomic qubits in silicon for fast, controllable exchange coupling;1
fast, high fidelity qubit initialisation and read-out;2 low noise all-epitaxial gates allowing for highly
stable qubits;3 and qubit control4,5 that provides a deep understanding of the impact of the solid-state
environment6 on qubit designs and operation. I will also discuss our latest results in quantum
machine learning,7 analogue simulation8,9 and demonstration of the highest efficiency Grover’s
algorithm to date.10


1Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, M.Y. Simmons, A fast
( ns) two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371 (2019).
2 D. Keith, M.G. House, M.B. Donnelly, T.F. Watson, B. Weber, M.Y. Simmons,
Microsecond spin qubit readout with a strong-response single electron transistor.
Phys. Rev. X 9, 041003 (2019); D. Keith, S.K. Gorman, L. Kranz, Y. He,
J.G. Keizer, M.A. Broome, M.Y. Simmons, Benchmarking high fidelity single-shot readout of
semiconductor qubits, New J. Phys. 21, 063011 (2019).
3 L. Kranz, S.K. Gorman, B. Thorgrimsson, Y. He, D. Keith, J.G. Keizer, M.Y. Simmons, Exploiting
a single-crystal environment to minimize the charge noise on qubits in silicon. Adv. Mater.
32(40), 2003361 (2020).
4 L. Fricke, S.J. Hile, L. Kranz, Y. Chung, Y. He, P. Pakkiam, J.G. Keizer, M.G. House,
M.Y. Simmons, Coherent spin control of a precision placed donor bound electron qubit in silicon.
Nat. Commun. 12, 3323 (2021).
5 J. Reiner, Y. Chung, C. Lehner, S.H. Misha, S. Monir, D. Poulos, K. Charde, L. Kranz,
B. Thorgrimsson, P. Macha, D. Keith, Y-L. Hsueh, R. Rahman, J.G. Keizer, S.K. Gorman,
M.Y. Simmons, Control of multiple nuclear spin quantum registers. Nat. Nanotechnol. 19,
584 (2024).
6 M. Koch, J.G. Keizer, P. Pakkiam, D. Keith, M.G. House, E. Peretz, M.Y. Simmons,
Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor. Nat.
Nanotechnol. 14(2), 137 (2019).
7 S.A. Sutherland, M. Donnelly, J.G. Keizer, C.R. Myers, B. Thorgrimsson, Y. Chung, S.K. Gorman,
M.Y. Simmons, Experimental quantum enhanced machine learning using quantum many body
systems. Paper in review (2024).
8 M. Kiczynski, S.K. Gorman, H. Geng, M.B. Donnelly, Y. Chung, Y. He, J.G. Keizer,
M.Y. Simmons, Engineering topological states in atom-based semiconductor quantum dots.
Nature 606(7915), 694 (2022).
9 M.B. Donnelly, Y. Chung, R. Garreis, S. Plugge, D. Pye, M. Kiczynski, M.M. Munia,
S. Sutherland, B. Voisin, L. Kranz, Y.L. Hsueh, A.M. Saffat-Ee Huq, C.M. Moehle, C.R. Myers,
R. Rahman, J.G. Keizer, S.K. Gorman,  M.Y. Simmons, Large-scale analogue quantum
simulation using precision atom-based quantum dot arrays. Paper in review (2024).
10 I. Thorvaldson, D. Poulos, C.M. Moehle, S.H. Misha, H. Edlbauer, J. Reiner, H. Geng, B. Voisin,
M.T. Jones, M.B. Donnelly, L.F. Peña, C.D. Hill, C.R. Myers, J.G. Keizer, Y. Chung,
S.K. Gorman, L. Kranz, M.Y. Simmons, Grover’s algorithm in a four-qubit silicon processor
above the fault-tolerant threshold. arXiv:2404.08741v1 (2024).


Biography

Michelle Simmons is the CEO and Founder of Silicon Quantum Computing and longstanding Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology. As one of the world’s leading experimental physicists, she is at the forefront of developing a silicon-based quantum computer and globally renowned for creating the field of atomic electronics.

Simmons has been awarded numerous international prizes, including the Bakerian Medal from The Royal Society, UK, the U.S. Feynman Prize for Nanotechnology and the L’Oréal-UNESCO Laureate in the Physical Sciences. In 2023, she was awarded the Prime Minister’s Prize for Science. She is a Fellow of the Royal Academy of Science in the UK, and of the Academies of Science in Australia and the United States. In 2018, Simmons was named Australian of the Year.