Apr 23, 2024
11:45am - 12:00pm
Room 340/341, Level 3, Summit
Nicolò Maccaferri8,7,Joel Kuttruff1,Marco Romanelli2,Esteban Pedrueza-Villalmanzo3,Jonas Allerbeck4,Jacopo Fregoni5,Valeria Saavedra-Becerril6,Joakim Andréasson6,Daniele Brida7,Alexandre Dmitriev3,Stefano Corni2
Universität Konstanz1,Università degli Studi di Padova2,University of Gothenburg3,Empa–Swiss Federal Laboratories for Materials Science and Technology4,Universidad Autonoma de Madrid5,Chalmers University of Technology6,University of Luxembourg7,Umeå University8
Nicolò Maccaferri8,7,Joel Kuttruff1,Marco Romanelli2,Esteban Pedrueza-Villalmanzo3,Jonas Allerbeck4,Jacopo Fregoni5,Valeria Saavedra-Becerril6,Joakim Andréasson6,Daniele Brida7,Alexandre Dmitriev3,Stefano Corni2
Universität Konstanz1,Università degli Studi di Padova2,University of Gothenburg3,Empa–Swiss Federal Laboratories for Materials Science and Technology4,Universidad Autonoma de Madrid5,Chalmers University of Technology6,University of Luxembourg7,Umeå University8
Molecular polaritons are hybrid light-matter states that emerge when a molecular transition strongly interacts with photons in a resonator. At optical frequencies, this interaction unlocks a way to explore and control new chemical phenomena at the nanoscale. Achieving such control at ultrafast timescales, however, is an outstanding challenge, as it requires a deep understanding of the dynamics of the collectively coupled molecular excitation and the light modes. Here, we investigate the dynamics of collective polariton states, realized by coupling molecular photoswitches to optically anisotropic plasmonic nanoantennas. Pump-probe experiments reveal an ultrafast collapse of polaritons to pure molecular transition triggered by femtosecond-pulse excitation. Through a synergistic combination of experiments and quantum mechanical modelling, we show that the response of the system is governed by intramolecular dynamics, occurring one order of magnitude faster with respect to the uncoupled excited molecule relaxation to the ground state. Our results provide exciting foundation for the further exploration of the synthesis and characterization of strongly coupled photoswitch systems, towards a full control of ultrafast chemical processes at the nanoscale.