April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting & Exhibit
ES04.03.01

Ultrafast Deposition of Faceted Lithium Polyhedra by Outpacing SEI Formation

When and Where

Apr 24, 2024
8:15am - 8:30am
Room 422, Level 4, Summit

Presenter(s)

Co-Author(s)

Xintong Yuan1,Bo Liu1,Matthew Mecklenburg1,Yuzhang Li1

University of California, Los Angeles1

Abstract

Xintong Yuan1,Bo Liu1,Matthew Mecklenburg1,Yuzhang Li1

University of California, Los Angeles1
Electrodeposition of lithium (Li) metal is critical for high-energy batteries. However, the simultaneous formation of a surface corrosion film termed the solid electrolyte interphase (SEI) complicates the deposition process, which underpins our poor understanding of Li metal electrodeposition. Here we decouple these two intertwined processes by outpacing SEI formation at ultrafast deposition current densities while also avoiding mass transport limitations. By using cryogenic electron microscopy, we discover the intrinsic deposition morphology of metallic Li to be that of a rhombic dodecahedron, which is surprisingly independent of electrolyte chemistry or current collector substrate. In a coin cell architecture, these rhombic dodecahedra exhibit near point-contact connectivity with the current collector, which can accelerate inactive Li formation. We propose a pulse-current protocol that overcomes this failure mode by leveraging Li rhombic dodecahedra as nucleation seeds, enabling the subsequent growth of dense Li that improves battery performance compared with a baseline. While Li deposition and SEI formation have always been tightly linked in past studies, our experimental approach enables new opportunities to fundamentally understand these processes decoupled from each other and bring about new insights to engineer better batteries.

Keywords

Li | transmission electron microscopy (TEM)

Symposium Organizers

Betar Gallant, Massachusetts Institute of Technology
Tao Gao, University of Utah
Yuzhang Li, University of California, Los Angeles
Wu Xu, Pacific Northwest National Laboratory

Session Chairs

Tao Gao
Yuzhang Li

In this Session