April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting & Exhibit
EL06.02.04

Molecular-Beam Epitaxy of SrMoO3 Films with Record Low Electrical Resistivity

When and Where

Apr 23, 2024
2:30pm - 2:45pm
Room 343, Level 3, Summit

Presenter(s)

Co-Author(s)

Anna Park1,Vivek Anil1,Matthew Barone1,Brendan Faeth1,Tobias Schwaigert1,Kyle Shen1,Darrell Schlom1

Cornell University1

Abstract

Anna Park1,Vivek Anil1,Matthew Barone1,Brendan Faeth1,Tobias Schwaigert1,Kyle Shen1,Darrell Schlom1

Cornell University1
Molecular-beam epitaxy of SrMoO3 films with record low electrical resistivity
Anna S. Park1,2,*, Vivek Anil3,*, Matthew R. Barone1,2, Brendan D. Faeth2, Tobias Schwaigert1,2, Kyle M. Shen3,4 , Darrell G. Schlom1,2,4,5

1Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
2Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853
3Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
4Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
5Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
*authors contributed equally

SrMoO3 is the most conducting perovskite oxide (~5.1 at room temperature),[1] about 40 times more conductive than SrRuO3. This makes it an attractive material as a bottom electrode for perovskite heterostructures, particularly for the high-K dielectric BaxSr1-xTiO3.[2] Unfortunately, the synthesis of molybdates by traditional MBE is difficult due to the low vapor pressure of molybdenum.[3] In contrast to elemental molybdenum, its oxide MoO3 has a very high vapor pressure, which makes it a suitable candidate for a variant of MBE where a molecular beam of a metal oxide rather than its elemental counterpart is used.[4] One challenge of using MoO3 as a source, however, is its tendency to reduce to non-volatile MoO2 in an ultrahigh vacuum environment. This challenge was recently circumvented by injecting a steady flow of oxygen directly into the crucible, enabling the growth of SrMoO3 films using the stable flux of MoO3 molecules emanating from a MoO3 source in conjunction with the flux of strontium atoms emanating from a strontium source, both of which were containing within MBE effusion cells.[3] The properties of oxide conductors often depend strongly on composition, where off stoichiometry can increase the room-temperature resistivity and dramatically decrease the residual resistivity ratio . This disorder is presumably responsible for the lowest room-temperature resistivity values obtained to date for SrMoO3 films grown by conventional MBE and pulsed-laser deposition being 24 and , respectively,[2,5] which is a factor of 5 higher than the best SrMnO3 single crystals.[1] Here we report the growth of SrMoO3 in an adsorption-controlled regime where thermodynamics automatically controls film composition. To achieve this adsorption-controlled regime, substrate temperatures above 1100 °C are needed, which are unattainable in conventional oxide MBE systems. At the PARADIM thin film facility, we can reach substrate temperatures up to 2000 °C with a CO2-laser substrate heater, allowing us to capitalize on the volatility of SrO at ~1100 °C. The resulting phase-pure epitaxial SrMoO3 thin films are characterized by narrow rocking curves, room-temperature resistivities under and residual resistivity ratios higher than the best SrMoO3 single crystal.[1] We additionally map the band structure of these high-quality SrMoO3 films with angle-resolved photoemission spectroscopy.

[1] I. Nagai, et al. Appl. Phys. Lett. 87, 024105 (2005).
[2] H. Takatsu, et al., J. Cryst. Growth 543, 125685 (2020).
[3] P. Saig, et al., APL Mater. 7, 051107 (2019).
[4] K. Atkinson, et al., APL Mater. 8, 081110 (2020).
[5] T. Kuznetsova, et al., J. Vac. Sci. Technol. A 41 (2023).
[6] A. Radetinac, et al., Appl. Phys. Lett. 105, 114108 (2014)

Keywords

Mo

Symposium Organizers

Aiping Chen, Los Alamos National Laboratory
Woo Seok Choi, Sungkyunkwan University
Marta Gibert, Technische Universität Wien
Megan Holtz, Colorado School of Mines

Symposium Support

Silver
Korea Vacuum Tech, Ltd.

Bronze
Center for Integrated Nanotechnologies, Los Alamos National Laboratory
Radiant Technologies, Inc.

Session Chairs

Ho Nyung Lee
Km Rubi

In this Session