April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting
SB10.04.01

Manipulating Physicochemical Properties of Biosensor Platform with Polysuccinimide-Silica Nanocomposite for Enhanced Protein Detection

When and Where

Apr 23, 2024
5:00pm - 7:00pm
Flex Hall C, Level 2, Summit

Presenter(s)

Co-Author(s)

Chaenyung Cha1,Rabi Saleh Ibrahim1

Ulsan National Institute of Science and Technology1

Abstract

Chaenyung Cha1,Rabi Saleh Ibrahim1

Ulsan National Institute of Science and Technology1
As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device. The efficacy of this PSI-SNP system is further validated by applying it on the surface of a microneedle array (MN), which has emerged as a promising POCT device capable of accessing interstitial fluid through minimal penetration of the skin. This PSI-SNP MN is demonstrated to detect a wide array of proteins with high sensitivity on par with conventional whole serum analysis, validated by in vivo animal testing, effectively displaying broad applicability in biomedical engineering.

Keywords

biomaterial | surface chemistry

Symposium Organizers

Simone Fabiano, Linkoping University
Sahika Inal, King Abdullah University of Science and Technology
Naoji Matsuhisa, University of Tokyo
Sihong Wang, University of Chicago

Symposium Support

Bronze
IOP Publishing

Session Chairs

Sahika Inal
Sihong Wang

In this Session