December 1 - 6, 2024
Boston, Massachusetts

Event Supporters

2024 MRS Fall Meeting & Exhibit
EL08.05/QT04.05.03

Remote Spin-Spin Interactions Mediated by Superconducting Circuits for Quantum Applications

When and Where

Dec 3, 2024
11:15am - 11:30am
Sheraton, Second Floor, Back Bay A

Presenter(s)

Co-Author(s)

Carolina del Río Bueno1,David Rodriguez2,Marina Calero de Ory2,Marcos Rubín Osanz1,Daniel Granados3,José Luis García Palacios1,Dawid Pinkowicz4,Nuria Crivillers5,Maria Carmen Pallarés1,Anabel Gracia Lostao1,David Zueco1,María José Martínez Pérez1,Alicia Gomez2,Fernando Luis1

Instituto de Nanociencia y Materiales de Aragón1,Centro de Astrobiología2,IMDEA Materials Institute3,Jagiellonian University4,Instituto de Ciencia de Materiales de Barcelona5

Abstract

Carolina del Río Bueno1,David Rodriguez2,Marina Calero de Ory2,Marcos Rubín Osanz1,Daniel Granados3,José Luis García Palacios1,Dawid Pinkowicz4,Nuria Crivillers5,Maria Carmen Pallarés1,Anabel Gracia Lostao1,David Zueco1,María José Martínez Pérez1,Alicia Gomez2,Fernando Luis1

Instituto de Nanociencia y Materiales de Aragón1,Centro de Astrobiología2,IMDEA Materials Institute3,Jagiellonian University4,Instituto de Ciencia de Materiales de Barcelona5
Hybrid platforms combining molecular spins and superconducting circuits allow scaling up quantum computational resources by either exploiting the chemical design of molecules behaving as multiple qubits or qudits or via a proper engineering of the superconducting circuit [1-3]. Here, we address experimentally this second option. We focus on circuits based on lumped element LC resonators. Their relevant properties, resonance frequency ω<sub>r</sub> and quality factor Q, can be widely tuned without affecting the transmission through the readout line. Here, we realize resonator pairs able to introduce communication channels between remote spin qubit ensembles . A superconducting chip consisting of seven LC resonator couples has been designed and fabricated. Resonators have ω<sub>r</sub> ranging from 1.7 GHz to 3.0 GHz, which makes them individually addressable. Couplings between resonators in each pair have been engineered by the design of the two capacitors and their mutual distances. We explore their coupling to free radicals, model S=1/2 spin qubits, deposited onto either one or the two inductors of each pair. In the first case, we observe strong coupling of the spin ensemble to “its local” resonator and, besides, to photon modes in its remote companion. In resonator pairs hosting two different organic radicals we have observed evidences for the coherent coupling between the polaritonic light-matter states of both resonators. These experiments provide a method for performing spin resonance on a given specimen at two resonances simultaneously and pave the way for introducing coherent communication channels between two remote spin qubit ensembles, thus for scaling up this hybrid platform.<br/><br/>References<br/>[1] M. D. Jenkins, D. Zueco, O. Roubeau, G. Aromí, J. Majer and F. Luis, Dalton Trans. 45, 16682-16693 (2016)<br/>[2] S. Carretta, D. Zueco, A. Chiesa, Á. Gómez-León, and F. Luis, Appl. Phys. Lett. 118, 240501 (2021)<br/>[3] A. Chiesa, S. Roca, S. Chicco, M.C. de Ory, A. Gómez-León, A. Gomez, D. Zueco, F. Luis, and S. Carretta, Phys. Rev. Applied 19, 064060 (2023)

Keywords

electron spin resonance | qubit | spin

Symposium Organizers

Robert Bogdanowicz, Gdansk University of Technology
Chia-Liang Cheng, National Dong Hwa University
David Eon, Institut Neel
Shannon Nicley, Michigan State University

Symposium Support

Gold
Seki Diamond Systems

Bronze
Applied Diamond, Inc.
BlueWaveSemiconductor
Diatope GmbH
Element Six
Evolve Diamonds
Fine Abrasives Taiwan Co., LTD.
Fraunhofer USA
Great Lakes Crystal Technologies
HiQuTe Diamond
Plasmability LLC
QZabre AG
WD Advanced Materials

Session Chairs

Anke Krueger
Aldona Mzyk

In this Session