Moiré materials have recently emerged as widely tunable platforms hosting exotic strongly correlated and topological phenomena, including superconductivity, correlated insulator states, orbital magnetism and ferroelectricity. They can also be used to perform quantum simulation of important models in condensed matter systems. The number of materials that have been combined into moiré structures is continuously growing, currently including graphene, hexagonal boron nitride and transition metal dichalcogenides, with future prospects for expanding to 2D magnets, superconductors, and more. From an initial focus on bilayer structures, the field is now expanding to include the exploration of various types of multilayer moiré materials.
The plethora of phenomena that have been discovered in moiré systems is motivating intense research efforts ranging from understanding the origin of the unconventional superconductivity observed in magic-angle twisted bilayer graphene to investigating the interplay of correlations, magnetism, and topology in a tunable flat-band platform. The increasing number of moiré materials being studied and the richness of emerging new phenomena make this one of the most rapidly evolving fields in condensed matter physics.
This symposium will focus on both experimental and theoretical efforts to understand and characterize phenomena arising in moiré materials, covering the different directions the field is taking, including transport and scanning tunnelling microscopy studies, optical characterization, investigation of magnetic phenomena, efforts to improve fabrication strategies to solve the issue of twist-angle disorder, and the use of moiré materials as quantum simulators.