This symposium will cover the physics, synthesis, characterization, and application of current and emerging quantum and topological two-dimensional systems. New materials in these categories are expected to exhibit novel states of matter and enable new electronic devices and computing architectures, such as topological electronics and quantum computing.
The first day of the symposium will focus on the theory and synthesis of 2D behavior in thin films. The first sessions will create a shared theoretical foundation by focusing on the physical framework and mathematical tools needed to understand topological phenomena in thin films and heterostructures. A key focus in this session will be on novel calculation schemes for predicting topological materials and quantum phenomena in 2D. Following the theoretical sessions will be a session on the synthesis, characterization, and application of topological thin films and heterostructures composed of materials that show quantum and topological phenomena in the bulk. Discussion of film growth techniques and fabrication methods; enhancing the properties that are important for practical applications; and discussions that advance understanding of the fundamental phenomena are encouraged. The second day of the symposium will begin with sessions focused on theoretical aspects of non-trivial topology in Van der Waals systems. The theory session will be followed by sessions focusing on experimental aspects of Van der Waals materials, with focus on novel systems such as twisted bilayer graphene and Kagome lattice materials. Finally, this symposium will conclude with a session on two-dimensional topological superconductivity. In this session, we focus on the origins and stabilization of topological superconductivity, creating quantum computing systems that are robust against decoherence, and interface engineering of hybrid topological superconductors with non-abelian anyons. Symposium contributions should shed light on the fundamental scientific problems, reveal novel phenomena, or address obstacles confronting the development of practical applications.
Joint sessions are being considered with QT05—2D Topological Materials—Growth, Theoretical Models and Applications, and QT10—Emerging Phenomena in Moiré Materials.