2019 MRS Fall Meeting
Symposium MQ01-Coherent and Correlated Magnetic Materials for Hybrid Quantum Interfaces
Increasing activity in quantum information systems (QIS) has highlighted the need to move beyond isolated systems with a single coherent quantum state to more complex quantum networks where this coherence is transduced between distinct elements and degrees of freedom (for example between optical and microwave photons used for quantum communication and quantum computation, respectively). The spin degree of freedom is a promising candidate for this transduction. For example, recent advances in measurements of coherent electronic spin dynamics, especially near room temperature, underlies fundamental advances in sensing, quantum information processing, and low-power (non-quantum) devices such as magnetic memory and spin logic. A wide variety of materials exhibit coherent electronic spin dynamics, and thus studies of these effects have cross-platform implications. For example, at the single spin level similar dynamics can occur in diamond color centers, chromophores, organic light emitting diodes, silicon quantum dots, and complex oxide heterostructures while correlated spin excitations (e.g. magnons) can dramatically enhance coupling to single spins, microwave photons, and optical scattering. Fundamental theories of spin transfer, spin pumping, photonic coupling, and intersystem crossings are now being applied across these materials and disciplinary boundaries of spin physics, spin chemistry, and quantum information.
In order to focus on the directions of most immediate interest the emphasis of the symposium will be on materials and devices in which these effects occur at room temperature, or where a pathway towards room temperature is feasible.
Topics will include:
- Spin torque and spin torque devices
- Manipulation of singlet/triplet conversion in organic materials and devices
- Coherent spin dynamics in two-dimensional materials
- Spin/color centers in insulators and wide-gap semiconductors
- Diamond magnetometry
- Spin transport dynamics in oxides, semiconductors, and metals
- Persistent optically or electrically induced magnetization
- Coherent spin-optical conversation for quantum information
Invited Speakers:
- David Awschalom (The University of Chicago, USA)
- Jenny Hoffman (Harvard University, USA)
- Claudia Felser (Max Plank Institut, Germany)
- Christian Degen (ETH Zurich, Switzerland)
- Feng Pan (Tsinghua University, China)
- Ania Bleszynski Jayich (University of California, Santa Barbara, USA)
- Jon Breeze (Imperial College London, United Kingdom)
- Michael Flatte (University of Iowa, USA)
- James Haigh (Hitachi Cambridge, United Kingdom)
- Patrick Maletinsky (University of Basel, Switzerland)
- Chris Palmstrom (University of California at Santa Barbara, USA)
- Dany Lachance Quirion (Univeristy of Tokyo, Japan)
- Vanessa Sih (University of Michigan, USA)
- Bernard Urbaszek (CNRS - Toulouse, France)
Symposium Organizers
Evelyn Hu
Harvard University
USA
Shunsuki Fukami
Tohoku University
Electrical, Information, and Physics Engineering
Japan
Andrew Fisher
Imperial College London
London Center for Nanotechnology
United Kingdom
Ezekiel Johnston-Halperin
The Ohio State University
Physics
USA
Topics
devices
electronic material
Magnetic
magnetic properties
magnetooptic
magnetoresistance (magnetic)
optical properties
optoelectronic
semiconducting
spintronic