Apr 10, 2025
1:30pm - 2:00pm
Summit, Level 4, Room 434
Maksym Kovalenko1,2
ETH Zurich1,Empa–Swiss Federal Laboratories for Materials Science and Technology2
This lecture will span the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), as well as our latest work on their synthesis, self-organization, and optical properties, including unpublished work. LHP NCs are of broad interest as classical light sources (LED/LCD displays) and as quantum light sources (quantum sensing and imaging, quantum communication, optical quantum computing). The current development in LHP NC surface chemistry, using designer phospholipid capping ligands, allows for increased stability down to single particle level [1]. The brightness of such a quantum emitter is ultimately described by Fermi’s golden rule, where a radiative rate proportional to its oscillator strength (intrinsic emitter property) and the local density of photonic states (photonic engineering, i.e. cavity). With perovskite NCs, we present a record-low sub-100 ps radiative decay time for CsPb(Br/Cl)
3, almost as short as the reported exciton coherence time, by the NC size increase to 30 nm [2]. The characteristic dependence of radiative rates on QD size, composition, and temperature suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations for the case of the giant oscillator strength. Importantly, the fast radiative rate is achieved along with the single-photon emission despite the NC size being ten times larger than the exciton Bohr radius. When such bright and coherent QDs are assembled into superlattices, collective properties emerge, such as superradiant emission from the inter-NC coupling and energy-transfer-related phenomena [3,4]. We also will discuss a large degree of circular polarization andalso present the generation of strongly chiral emission in single perovskite QDs by placing them near chiral plasmonic particles, boosting the degree of circular polarization by an order of magnitude. The handedness anisotropy of both excitation and emission showed an order of magnitude increase at the presence of chiral field, which was accompanied by a 3-4-fold acceleration of the radiative decay rate [5].
[1] V. Morad, A. Stelmakh, M. Svyrydenko, L.G. Feld, S.C. Boehme, M. Aebli, J. Affolter, C.J. Kaul, N.J. Schrenker, S. Bals, Y. Sahin, D.N. Dirin, I. Cherniukh, G. Raino, A. Baumketner, M.V. Kovalenko
Nature,
2024, 626, 542–548
[2] C. Zhu, S.C. Boehme, L.G. Feld, A. Moskalenko, D.N. Dirin, R.F. Mahrt, T. Stöferle, M.I. Bodnarchuk, A.L. Efros, P.C. Sercel, M.V. Kovalenko, G. Rainò.
Nature,
2024, 626, 535–541
[3] I. Cherniukh, G. Rainò, T. Stöferle, M. Burian, A. Travesset, D. Naumenko, H. Amenitsch, R. Erni, R.F. Mahrt, M.I. Bodnarchuk & M.V. Kovalenko.
Nature
2021, 593, 535–542
[4] T.V. Sekh, I. Cherniukh, E. Kobiyama, T.J. Sheehan, A. Manoli, C. Zhu, M. Athanasiou, M. Sergides, O. Ortikova, M.D. Rossell, F. Bertolotti, A. Guagliardi, N. Masciocchi, R. Erni, A. Othonos, G. Itskos, W.A. Tisdale, T. Stöferle, G. Rainò, M.I. Bodnarchuk, and M.V. Kovalenko.
ACS Nano
2024, 8423–8436
[5] T.Kim, M. Svyrydenko, R. M. Kim, J. H. Han, K. T. Nam, M. Bodnarchuk, G.Raino, M. V. Kovalenko et al. in preparation