Apr 10, 2025
4:45pm - 5:00pm
Summit, Level 4, Room 441
Amalya Johnson1,Johnathan Georgaras1,Xiaozhe Shen2,Helen Yao1,Ashley Saunders1,Helen Zeng1,Hyungjin Kim1,Aditya Sood1,Tony Heinz1,Aaron Lindenberg1,Duan Luo2,Felipe da Jornada1,Fang Liu1
Stanford University1,SLAC National Accelerator Laboratory2
Amalya Johnson1,Johnathan Georgaras1,Xiaozhe Shen2,Helen Yao1,Ashley Saunders1,Helen Zeng1,Hyungjin Kim1,Aditya Sood1,Tony Heinz1,Aaron Lindenberg1,Duan Luo2,Felipe da Jornada1,Fang Liu1
Stanford University1,SLAC National Accelerator Laboratory2
Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS
2/WS
2 at 4° twist angle and WSe
2/MoSe
2 heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.
11. Johnson, A. C., Georgaras, J.D.,
et al. Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures.
Science Advances 10, eadj8819 (2024).