April 7 - 11, 2025
Seattle, Washington
Symposium Supporters
2025 MRS Spring Meeting & Exhibit
SF02.04.05

Protonation-Driven Polarization Retention Failure in Nano-Columnar Lead-Free Ferroelectric Thin Films

When and Where

Apr 8, 2025
5:00pm - 7:00pm
Summit, Level 2, Flex Hall C

Presenter(s)

Co-Author(s)

Tae Heon Kim1,2

Korea Institute of Science and Technology1,University of Ulsan2

Abstract

Tae Heon Kim1,2

Korea Institute of Science and Technology1,University of Ulsan2
Understanding microscopic mechanisms of polarization retention characteristics in ferroelectric thin films is of great significance for exploring unusual physical phenomena inaccessible in the bulk counterparts and for realizing thin-film-based functional electronic devices. Perovskite (K,Na)NbO3 is an excellent class of lead-free ferroelectric oxides attracting tremendous interest thanks to its potential applications to non-volatile memory and eco-friendly energy harvester/storage. Nonetheless, in-depth investigation of ferroelectric properties of (K,Na)NbO3 films and the following developments of nano-devices are limited due to challenging thin-film fabrication associated with non-stoichiometry by volatile K and Na atoms. Herein, we epitaxially grow ferroelectric (K,Na)NbO3 films of which the atomic-level geometrical structures strongly depend on thickness-dependent strain relaxation. Nanopillar crystal structures are identified in fully relaxed (K,Na)NbO3 films to the bulk states representing a continuous reduction of switchable polarization under air environments, that is, polarization retention failures. Protonation by water dissociation is responsible for the humidity-induced retention loss in nano-columnar (K,Na)NbO3 films. The protonation-driven polarization retention failure originates from domain wall pinning by the accumulation of mobile hydrogen ions at charged domain walls for effective screening of polarization-bound charges. Conceptually, the results will be utilized for rational design to advanced energy materials such as photo-catalysts enabling ferroelectric tuning of water splitting.

Keywords

ferroelectricity | thin film

Symposium Organizers

Marta Gibert, Technische Universität Wien
Tae Heon Kim, Korea Institute of Science and Technology
Megan Holtz, Colorado School of Mines
Le Wang, Pacific Northwest National Laboratory

Symposium Support

Bronze
epiray Inc.
Nextron
Plasmaterials, Inc.
QUANTUM DESIGN

Session Chairs

Marta Gibert
Megan Holtz
Tae Heon Kim
Le Wang

In this Session