Apr 10, 2025
10:30am - 10:45am
Summit, Level 3, Room 330
Zhenkun Yuan1,Muhammad Hasan2,Gideon Kassa1,Diana Dahliah3,4,Andrew Pike1,Shaham Quadir5,Guillermo Esparza6,Sita Dugu5,Romain Claes3,Yagmur Coban1,Smitakshi Goswami1,Cierra Chandler7,Yihuang Xiong1,Philip Yox2,Victoria Kyveryga2,Gian-Marco Rignanese3,Ismaila Dabo7,David Fenning6,Obadiah Reid8,5,Andriy Zakutayev5,Sage Bauers5,Jifeng Liu1,Kirill Kovnir2,9,Geoffroy Hautier1
Dartmouth College1,Iowa State University2,Université Catholique de Louvain3,An-Najah National University4,National Renewable Energy Laboratory5,University of California, San Diego6,The Pennsylvania State University7,University of Colorado Boulder8,Ames Laboratory9
Zhenkun Yuan1,Muhammad Hasan2,Gideon Kassa1,Diana Dahliah3,4,Andrew Pike1,Shaham Quadir5,Guillermo Esparza6,Sita Dugu5,Romain Claes3,Yagmur Coban1,Smitakshi Goswami1,Cierra Chandler7,Yihuang Xiong1,Philip Yox2,Victoria Kyveryga2,Gian-Marco Rignanese3,Ismaila Dabo7,David Fenning6,Obadiah Reid8,5,Andriy Zakutayev5,Sage Bauers5,Jifeng Liu1,Kirill Kovnir2,9,Geoffroy Hautier1
Dartmouth College1,Iowa State University2,Université Catholique de Louvain3,An-Najah National University4,National Renewable Energy Laboratory5,University of California, San Diego6,The Pennsylvania State University7,University of Colorado Boulder8,Ames Laboratory9
With InP and GaP as notable examples, phosphide compounds present exciting opportunities for discovering new solar absorbers. We demonstrate this with the ternary Zintl phosphide BaCd
2P
2, a novel candidate identified from our high-throughput computational screening for stable and long carrier lifetime solar absorbers. Our extensive theoretical and experimental evidence shows that BaCd
2P
2 is highly stable and exhibits excellent optoelectronic and defect properties, including shallow low-energy intrinsic defects, bright photoluminescence, and a carrier lifetime of up to 30 ns, even in powder form. These promising properties extend to all
AM2P
2 (
A=Ca, Sr, Ba,
M=Zn, Cd) Zintl phosphides, which, with tunable band gaps (~1.5–2.0 eV), form a class of defect-tolerant solar absorbers suitable for both single-junction and tandem solar cells. Additionally, we will discuss our recent focused computational screening of nearly all known phosphides, which has led to a defect database for phosphides. Some interesting candidates will be presented, and, based on our data on phosphides across various structure types and chemistries, we will provide insights into the relationship between a material’s electronic structure and its defect tolerance.
[1] Z. Yuan, D. Dahliah, M. R. Hasan, G. Kassa, A. Pike, S. Quadir, R. Claes, C. Chandler, Y. Xiong, V. Kyveryga, P. Yox, G.-M. Rignanese, I. Dabo, A. Zakutayev, D. P. Fenning, O. G. Reid, S. Bauers, J. Liu, K. Kovnir, and G. Hautier, Discovery of the Zintl-phosphide BaCd
2P
2 as a long carrier lifetime and stable solar absorber,
Joule 8, 1412 (2024)
[2] S. Quadir, Z. Yuan, G. Esparza, S. Dugu, J. Mangum, A. Pike, M. R. Hasan, G. Kassa, X. Wang, Y. Coban, J. Liu, K. Kovnir, D. P. Fenning, O. G. Reid, A. Zakutayev, G. Hautier, S. R. Bauers, Low-Temperature Synthesis of Stable CaZn
2P
2 Zintl Phosphide Thin Films as Candidate Top Absorbers,
Adv. Energy Mater. 2402640 (2024)
[3] A. Pike
et al., A map of the Zintl 122-phases: influence of chemistry on stability and electronic structure, to be submitted