April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)

Event Supporters

2024 MRS Spring Meeting
ES03.04.02

Unveiling The Mechanical and Electrochemical Evolution of Nano Silicon Composite Anodes in Sulfide based All-Solid-State Batteries

When and Where

Apr 24, 2024
8:30am - 8:45am
Room 423, Level 4, Summit

Presenter(s)

Co-Author(s)

Hongli Zhu1

Northeastern University1

Abstract

Hongli Zhu1

Northeastern University1
The utilization of silicon (Si) anodes in all-solid-state lithium batteries (ASLBs) provides the potential for high energy density. However, the compatibility of sulfide solid-state electrolytes (SEs) with Si and carbon is often questioned due to potential decomposition. To investigate this, operando X-ray absorption near-edge structure (XANES) spectroscopy, ex-situ scanning electron microscopy (SEM) and ex-situ X-ray nano-tomography (XnT) were utilized to study the chemistry and structure evolution of nano Si composite anodes. Results from XANES demonstrated a partial decomposition of SEs during the first lithiation stage, which was further accelerated by the presence of carbon. But the performance of first three cycles in Si-SE-C was stable, which proved the generated media is ionically conductive. XnT and SEM results showed that the addition of SEs and carbon improved the structural stability of the anode with fewer pores and voids. A chemo-elasto-plastic model revealed that SEs and carbon buffered the volume expansion of Si, thus enhancing mechanical stability. The balance between the pros and cons of SEs and carbon in enhancing reaction kinetics and structural stability enabled the Si composite anode to demonstrate the highest Si utilization with higher specific capacities and better rate than pure Si and Si composite anodes with only SEs.

Symposium Organizers

Pieremanuele Canepa, University of Houston
Robert Sacci, Oak Ridge National Lab
Howard Qingsong Tu, Rochester Institute of Technology
Yan Yao, University of Houston

Symposium Support

Gold
Neware Technology LLC

Bronze
Toyota Motor Engineering and Manufacturing North America

Session Chairs

Robert Sacci
Fengyu Shen

In this Session